Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 5(2): e9408, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20195524

RESUMO

The PEX11 family of peroxisome membrane proteins have been shown to be involved in regulation of peroxisome size and number in plant, animals, and yeast cells. We and others have previously suggested that peroxisome proliferation as a result of abiotic stress may be important in plant stress responses, and recently it was reported that several rice PEX11 genes were up regulated in response to abiotic stress. We sought to test the hypothesis that promoting peroxisome proliferation in Arabidopsis thaliana by over expression of one PEX11 family member, PEX11e, would give increased resistance to salt stress. We could demonstrate up regulation of PEX11e by salt stress and increased peroxisome number by both PEX11e over expression and salt stress, however our experiments failed to find a correlation between PEX11e over expression and increased peroxisome metabolic activity or resistance to salt stress. This suggests that although peroxisome proliferation may be a consequence of salt stress, it does not affect the ability of Arabidopsis plants to tolerate saline conditions.


Assuntos
Arabidopsis/fisiologia , Peroxissomos/efeitos dos fármacos , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Microscopia de Fluorescência , Peroxinas , Peroxissomos/metabolismo , Peroxissomos/fisiologia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Nicotiana/citologia , Regulação para Cima/efeitos dos fármacos
2.
Int J Parasitol ; 40(7): 855-64, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20100489

RESUMO

Ectopically expressed double-stranded RNAs (dsRNAs) have recently been shown to suppress parasitic success of Meloidogyne spp. in plants. We have targeted two genes from the root-knot nematode Meloidogyne incognita; a dual oxidase gene implicated in the tyrosine cross-linking of the developing cuticle and a subunit of signal peptidase, a protein complex required for the processing of secreted proteins. While these genes are involved in different aspects of nematode development, the phenotypic consequences of RNA interference (RNAi) were similar with >or=50% reduction in nematode numbers in the roots and retardation of development to the egg-producing saccate females. Expression of processed dsRNA was observed, but no evidence of detectable levels of small interfering RNAs (siRNAs) was found in the transgenic plants. We show, to our knowledge for the first time, that combining expression of these dsRNAs by crossing appropriate Arabidopsis thaliana lines resulted in an additive effect that further reduced nematode numbers and developmental capacity. Combining RNAi target genes has the potential to enhance the efficacy of RNAi and may allow control of different nematode species or genera in the crop of interest.


Assuntos
Arabidopsis/parasitologia , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Helmintos/biossíntese , RNA Interferente Pequeno/biossíntese , Tylenchoidea/crescimento & desenvolvimento , Animais , Feminino , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Doenças das Plantas/parasitologia , RNA de Helmintos/genética , RNA Interferente Pequeno/genética , Serina Endopeptidases/genética
3.
Mol Plant Pathol ; 8(5): 701-11, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20507531

RESUMO

SUMMARY RNA interference (RNAi), first described for Caenorhabditis elegans, has emerged as a powerful gene silencing tool for investigating gene function in a range of organisms. Recent studies have described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when preparasitic juvenile nematodes take up double-stranded (ds)RNA that elicits a systemic RNAi response. Important developments over the last year have shown that in planta expression of a dsRNA targeting a nematode gene can successfully induce silencing in parasitizing nematodes. When the targeted gene has an essential function, a resistance effect is observed paving the way for the potential use of RNAi technology to control plant parasitic nematodes.

4.
Trends Plant Sci ; 10(8): 362-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16027029

RESUMO

RNA interference (RNAi) has recently been demonstrated in plant parasitic nematodes. It is a potentially powerful investigative tool for the genome-wide identification of gene function that should help improve our understanding of plant parasitic nematodes. RNAi should help identify gene and, hence, protein targets for nematode control strategies. Prospects for novel resistance depend on the plant generating an effective form of double-stranded RNA in the absence of an endogenous target gene without detriment to itself. These RNA molecules must then become available to the nematode and be capable of ingestion via its feeding tube. If these requirements can be met, crop resistance could be achieved by a plant delivering a dsRNA that targets a nematode gene and induces a lethal or highly damaging RNAi effect on the parasite.


Assuntos
Nematoides/patogenicidade , Plantas/parasitologia , Interferência de RNA/fisiologia , Animais , Caenorhabditis elegans/patogenicidade , Doenças das Plantas/parasitologia
5.
Plant Cell Rep ; 23(9): 647-53, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15449020

RESUMO

The expression of three genes that encode proteins involved in peroxisome biogenesis, beta-oxidation and the glyoxylate cycle was studied in Arabidopsis plants by fusing their promoter regions to the reporter gene luciferase. Malate synthase showed an extremely restricted pattern of expression, being detected only in young seedlings and the root tips of older plants. PEX1 and 3-ketoacyl thiolase (PED1) were expressed in roots, mature leaves, stems and flowers. However, only thiolase was up-regulated by starvation. Immunoblotting confirmed that neither malate synthase nor the other unique glyoxylate cycle enzyme isocitrate lyase are expressed in senescent leaves. These results indicate that, in contrast to cucumber, pumpkin and barley, the glyoxylate cycle does not play a role in the recycling of carbon from the turnover of membrane lipids during senescence and starvation in Arabidopsis.


Assuntos
Arabidopsis/enzimologia , Glioxilatos/metabolismo , Peroxissomos/enzimologia , Raízes de Plantas/enzimologia , Regiões Promotoras Genéticas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Cucumis sativus/enzimologia , Cucumis sativus/genética , Cucurbita/enzimologia , Cucurbita/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Reporter/genética , Hordeum/enzimologia , Hordeum/genética , Malato Sintase/genética , Malato Sintase/metabolismo , Oxirredução , Peroxissomos/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/genética
6.
Plant J ; 31(5): 639-47, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12207653

RESUMO

The phytohormone abscisic acid (ABA) inhibits the germination of many seeds, including Arabidopsis, but the mechanism for this is not known. In cereals, ABA inhibits the expression of genes involved in storage reserve mobilization. We have found that in Arabidopsis ABA decreases transcription from the promoters of marker genes for beta-oxidation and the glyoxylate cycle, essential pathways for the conversion of storage lipid (triacylglycerol) into sucrose. Thirty per cent of stored lipid is broken down over 6 days following imbibition of ABA-treated seed. Sucrose levels in ABA-treated seeds, rather than decreasing as under normal growth conditions, actually double during the 3 days following imbibition. This sucrose is derived from triacylglycerol as demonstrated by two mutants disrupted in the conversion of triacylglycerol into sucrose, kat2 and icl1, which do not accumulate sucrose in the presence of ABA. We conclude that the ABA block on germination is not a consequence of inhibition of storage lipid mobilization. Two independent programmes appear to operate, one that is blocked by ABA, governing developmental growth resulting in germination; and a second that governs storage lipid mobilization which is largely ABA-independent.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Germinação/fisiologia , Sementes/crescimento & desenvolvimento , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Glioxilatos/antagonistas & inibidores , Glioxilatos/metabolismo , Metabolismo dos Lipídeos , Mutação , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sacarose/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...