Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 9: 179, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082679

RESUMO

Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subject's scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and ß oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120-200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models.

2.
J Psychiatry Neurosci ; 39(5): 321-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24886788

RESUMO

BACKGROUND: Neuroimaging research has traditionally explored fear and anxiety in response to discrete threat cues (e.g., during fear conditioning). However, anxiety is a sustained aversive state that can persist in the absence of discrete threats. Little is known about mechanisms that maintain anxiety states over a prolonged period. Here, we used a robust translational paradigm (threat of shock) to induce sustained anxiety. Recent translational work has implicated an amygdala-prefrontal cortex (PFC) circuit in the maintenance of anxiety in rodents. To explore the functional homologues of this circuitry in humans, we used a novel paradigm to examine the impact of sustained anticipatory anxiety on amygdala-PFC intrinsic connectivity. METHODS: Task-independent fMRI data were collected in healthy participants during long-duration periods of shock anticipation and safety. We examined intrinsic functional connectivity. RESULTS: Our study involved 20 healthy participants. During sustained anxiety, amygdala activity was positively coupled with dorsomedial PFC (DMPFC) activity. High trait anxiety was associated with increased amygdala-DMPFC coupling. In addition, induced anxiety was associated with positive coupling between regions involved in defensive responding, and decreased coupling between regions involved in emotional control and the default mode network. LIMITATIONS: Inferences regarding anxious pathology should be made with caution because this study was conducted in healthy participants. CONCLUSION: Findings suggest that anticipatory anxiety increases intrinsic amygdala-DMPFC coupling and that the DMPFC may serve as a functional homologue for the rodent prefrontal regions by sustaining anxiety. Future research may use this defensive neural context to identify biomarkers of risk for anxious pathology and target these circuits for therapeutic intervention.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Antecipação Psicológica/fisiologia , Mapeamento Encefálico , Eletrochoque , Medo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Personalidade , Psicofísica , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 110(10): 4129-33, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23401511

RESUMO

From job interviews to the heat of battle, it is evident that people think and learn differently when stressed. In fact, learning under stress may have long-term consequences; stress facilitates aversive conditioning and associations learned during extreme stress may result in debilitating emotional responses in posttraumatic stress disorder. The mechanisms underpinning such stress-related associations, however, are unknown. Computational neuroscience has successfully characterized several mechanisms critical for associative learning under normative conditions. One such mechanism, the detection of a mismatch between expected and observed outcomes within the ventral striatum (i.e., "prediction errors"), is thought to be a critical precursor to the formation of new stimulus-outcome associations. An untested possibility, therefore, is that stress may affect learning via modulation of this mechanism. Here we combine a translational model of stress with a cognitive neuroimaging paradigm to demonstrate that stress significantly increases ventral striatum aversive (but not appetitive) prediction error signal. This provides a unique account of the propensity to form threat-related associations under stress with direct implications for our understanding of both normal stress and stress-related disorders.


Assuntos
Estresse Psicológico/fisiopatologia , Córtex Visual/fisiopatologia , Adolescente , Adulto , Ansiedade/fisiopatologia , Comportamento Apetitivo/fisiologia , Feminino , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Psicológicos , Adulto Jovem
4.
Neuroimage ; 60(1): 523-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178453

RESUMO

Functionally, anxiety serves to increase vigilance towards aversive stimuli and improve the ability to detect and avoid danger. We have recently shown, for instance, that anxiety increases the ability to a) detect and b) instigate defensive responses towards aversive and not appetitive face stimuli in healthy individuals. This is arguably the key adaptive function of anxiety, yet the neural circuitry underlying this valence-specific effect is unknown. In the present translational study, we sought evidence for the proposition that dorsomedial regions of the prefrontal (DMPFC) and cingulate cortex constitute the human homologue of the rodent prelimbic and are thus associated with increased amygdala responding during this adaptive threat bias in anxiety. To this end, we applied a novel functional connectivity analysis to healthy subjects (N=20) identifying the emotion of fearful and happy faces in an fMRI scanner under anxious (threat of unpredictable foot shock) and non-anxious (safe) conditions. We showed that anxiety significantly increased positive DMPFC-amygdala connectivity during the processing of fearful faces. This effect was a) valence-specific (it was not seen for happy faces), b) paralleled by faster behavioral response to fearful faces, and c) correlated positively with trait anxiety. As such we provide the first experimental support for an anxiety-mediated, valence-specific, DMPFC-amygdala aversive amplification mechanism in healthy humans. This may be homologous to the rodent prelimbic-amygdala circuit and may, given the relationship with trait anxiety, underlie vulnerability to anxiety disorders. This study thus pinpoints a key neural mechanism in adaptive anxiety and highlights its potential link to maladaptive anxiety.


Assuntos
Adaptação Psicológica/fisiologia , Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Psychophysiology ; 48(12): 1745-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21824155

RESUMO

Fearful faces readily activate the amygdala. Yet, whether fearful faces evoke fear is unclear. Startle studies show no potentiation of startle by fearful faces, suggesting that such stimuli do not activate defense mechanisms. However, the response to biologically relevant stimuli may be sensitized by anxiety. The present study tested the hypothesis that startle would not be potentiated by fearful faces in a safe context, but that startle would be larger during fearful faces compared to neutral faces in a threat-of-shock context. Subjects viewed fearful and neutral faces in alternating periods of safety and threat of shock. Acoustic startle stimuli were presented in the presence and absence of the faces. Startle was transiently potentiated by fearful faces compared to neutral faces in the threat periods. This suggests that although fearful faces do not prompt behavioral mobilization in an innocuous context, they can do so in an anxiogenic one.


Assuntos
Ansiedade/psicologia , Expressão Facial , Medo/psicologia , Adulto , Eletromiografia , Eletrochoque , Emoções , Face , Feminino , Habituação Psicofisiológica , Humanos , Masculino , Estimulação Luminosa , Reflexo de Sobressalto/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...