Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Epidemiol ; 6(2): e206, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35434457

RESUMO

Heat-related mortality is an increasingly important public health burden that is expected to worsen with climate change. In addition to long-term trends, there are also interannual variations in heat-related mortality that are of interest for efficient planning of health services. Large-scale climate patterns have an important influence on summer weather and therefore constitute important tools to understand and predict the variations in heat-related mortality. Methods: In this article, we propose to model summer heat-related mortality using seven climate indices through a two-stage analysis using data covering the period 1981-2018 in two metropolitan areas of the province of Québec (Canada): Montréal and Québec. In the first stage, heat attributable fractions are estimated through a time series regression design and distributed lag nonlinear specification. We consider different definitions of heat. In the second stage, estimated attributable fractions are predicted using climate index curves through a functional linear regression model. Results: Results indicate that the Atlantic Multidecadal Oscillation is the best predictor of heat-related mortality in both Montréal and Québec and that it can predict up to 20% of the interannual variability. Conclusion: We found evidence that one climate index is predictive of summer heat-related mortality. More research is needed with longer time series and in different spatial contexts. The proposed analysis and the results may nonetheless help public health authorities plan for future mortality related to summer heat.

2.
Sci Rep ; 9(1): 8104, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147622

RESUMO

Hydro-climatic extremes are influenced by climate change and climate variability associated to large-scale oscillations. Non-stationary frequency models integrate trends and climate variability by introducing covariates in the distribution parameters. These models often assume that the distribution function and shape of the distribution do not change. However, these assumptions are rarely verified in practice. We propose here an approach based on L-moment ratio diagrams to analyze changes in the distribution function and shape parameter of hydro-climate extremes. We found that important changes occur in the distribution of annual maximum streamflow and extreme temperatures. Eventual relations between the shapes of the distributions of extremes and climate indices are also identified. We provide an example of a non-stationary frequency model applied to flood flows. Results show that a model with a shape parameter dependent on climate indices in combination with a scale parameter dependent on time improves significantly the goodness-of-fit.

3.
Sci Rep ; 8(1): 15493, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341366

RESUMO

Persistent extreme heat events are of growing concern in a climate change context. An increase in the intensity, frequency and duration of heat waves is observed in several regions. Temperature extremes are also influenced by global-scale modes of climate variability. Temperature-Duration-Frequency (TDF) curves, which relate the intensity of heat events of different durations to their frequencies, can be useful tools for the analysis of heat extremes. To account for climate external forcings, we develop a nonstationary approach to the TDF curves by introducing indices that account for the temporal trend and teleconnections. Nonstationary TDF modeling can find applications in adaptive management in the fields of health care, public safety and energy production. We present a one-step method, based on the maximization of the composite likelihood of observed heat extremes, to build the nonstationary TDF curves. We show the importance of integrating the information concerning climate change and climate oscillations. In an application to the province of Quebec, Canada, the influence of Atlantic Multidecadal Oscillations (AMO) on heat events is shown to be more important than the temporal trend.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...