Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 154(1): 271-283, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949114

RESUMO

BACKGROUND: Undigested components of the human diet affect the composition and function of the microorganisms present in the gastrointestinal tract. Techniques like metagenomic analyses allow researchers to study functional capacity, thus revealing the potential of using metagenomic data for developing objective biomarkers of food intake. OBJECTIVES: As a continuation of our previous work using 16S and metabolomic datasets, we aimed to utilize a computationally intensive, multivariate, machine-learning approach to identify fecal KEGG (Kyoto encyclopedia of genes and genomes) Orthology (KO) categories as biomarkers that accurately classify food intake. METHODS: Data were aggregated from 5 controlled feeding studies that studied the individual impact of almonds, avocados, broccoli, walnuts, barley, and oats on the adult gastrointestinal microbiota. Deoxyribonucleic acid from preintervention and postintervention fecal samples underwent shotgun genomic sequencing. After preprocessing, sequences were aligned and functionally annotated with Double Index AlignMent Of Next-generation sequencing Data v2.0.11.149 and MEtaGenome ANalyzer v6.12.2, respectively. After the count normalization, the log of the fold change ratio for resulting KOs between pre- and postintervention of the treatment group against its corresponding control was utilized to conduct differential abundance analysis. Differentially abundant KOs were used to train machine-learning models examining potential biomarkers in both single-food and multi-food models. RESULTS: We identified differentially abundant KOs in the almond (n = 54), broccoli (n = 2474), and walnut (n = 732) groups (q < 0.20), which demonstrated classification accuracies of 80%, 87%, and 86% for the almond, broccoli, and walnut groups using a random forest model to classify food intake into each food group's respective treatment and control arms, respectively. The mixed-food random forest achieved 81% accuracy. CONCLUSIONS: Our findings reveal promise in utilizing fecal metagenomics to objectively complement self-reported measures of food intake. Future research on various foods and dietary patterns will expand these exploratory analyses for eventual use in feeding study compliance and clinical settings.


Assuntos
Microbioma Gastrointestinal , Juglans , Adulto , Humanos , Metagenoma , Dieta , Fezes , Biomarcadores , Ingestão de Alimentos , Metagenômica/métodos
2.
J Nutr ; 152(12): 2956-2965, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040343

RESUMO

BACKGROUND: The fecal metabolome is affected by diet and includes metabolites generated by human and microbial metabolism. Advances in -omics technologies and analytic approaches have allowed researchers to identify metabolites and better utilize large data sets to generate usable information. One promising aspect of these advancements is the ability to determine objective biomarkers of food intake. OBJECTIVES: We aimed to utilize a multivariate, machine learning approach to identify metabolite biomarkers that accurately predict food intake. METHODS: Data were aggregated from 5 controlled feeding studies in adults that tested the impact of specific foods (almonds, avocados, broccoli, walnuts, barley, and oats) on the gastrointestinal microbiota. Fecal samples underwent GC-MS metabolomic analysis; 344 metabolites were detected in preintervention samples, whereas 307 metabolites were detected postintervention. After removing metabolites that were only detected in either pre- or postintervention and those undetectable in ≥80% of samples in all study groups, changes in 96 metabolites relative concentrations (treatment postintervention minus preintervention) were utilized in random forest models to 1) examine the relation between food consumption and fecal metabolome changes and 2) rank the fecal metabolites by their predictive power (i.e., feature importance score). RESULTS: Using the change in relative concentration of 96 fecal metabolites, 6 single-food random forest models for almond, avocado, broccoli, walnuts, whole-grain barley, and whole-grain oats revealed prediction accuracies between 47% and 89%. When comparing foods with one another, almond intake was differentiated from walnut intake with 91% classification accuracy. CONCLUSIONS: Our findings reveal promise in utilizing fecal metabolites as objective complements to certain self-reported food intake estimates. Future research on other foods at different doses and dietary patterns is needed to identify biomarkers that can be applied in feeding study compliance and clinical settings.


Assuntos
Dieta , Juglans , Humanos , Adulto , Metabolômica/métodos , Metaboloma , Grão Comestível , Biomarcadores , Ingestão de Alimentos
3.
J Nutr ; 151(2): 423-433, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021315

RESUMO

BACKGROUND: Diet affects the human gastrointestinal microbiota. Blood and urine samples have been used to determine nutritional biomarkers. However, there is a dearth of knowledge on the utility of fecal biomarkers, including microbes, as biomarkers of food intake. OBJECTIVES: This study aimed to identify a compact set of fecal microbial biomarkers of food intake with high predictive accuracy. METHODS: Data were aggregated from 5 controlled feeding studies in metabolically healthy adults (n = 285; 21-75 y; BMI 19-59 kg/m2; 340 data observations) that studied the impact of specific foods (almonds, avocados, broccoli, walnuts, and whole-grain barley and whole-grain oats) on the human gastrointestinal microbiota. Fecal DNA was sequenced using 16S ribosomal RNA gene sequencing. Marginal screening was performed on all species-level taxa to examine the differences between the 6 foods and their respective controls. The top 20 species were selected and pooled together to predict study food consumption using a random forest model and out-of-bag estimation. The number of taxa was further decreased based on variable importance scores to determine the most compact, yet accurate feature set. RESULTS: Using the change in relative abundance of the 22 taxa remaining after feature selection, the overall model classification accuracy of all 6 foods was 70%. Collapsing barley and oats into 1 grains category increased the model accuracy to 77% with 23 unique taxa. Overall model accuracy was 85% using 15 unique taxa when classifying almonds (76% accurate), avocados (88% accurate), walnuts (72% accurate), and whole grains (96% accurate). Additional statistical validation was conducted to confirm that the model was predictive of specific food intake and not the studies themselves. CONCLUSIONS: Food consumption by healthy adults can be predicted using fecal bacteria as biomarkers. The fecal microbiota may provide useful fidelity measures to ascertain nutrition study compliance.


Assuntos
Dieta , Ingestão de Alimentos , Fezes/microbiologia , Adulto , Idoso , Biomarcadores , Microbioma Gastrointestinal , Humanos , Pessoa de Meia-Idade , Adulto Jovem
4.
J Agric Food Chem ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33205650

RESUMO

In the present study, urine samples were collected from healthy human volunteers to determine the metabolic fates of phenolic compounds and glucosinolates after a single meal of kale and daikon radish. The major glucosinolates and phenolic compounds in kale and daikon radish were measured. The urinary metabolome after feeding at different time periods was investigated. A targeted metabolite analysis method was developed based on the known metabolic pathways for glucosinolates and phenolic compounds. Using a targeted approach, a total of 18 metabolites were found in urine: 4 from phenolic compounds and 14 from glucosinolates. Among these metabolites, 4-methylsulfinyl-3-butenyl isothiocyanate, 4-methylsulfinyl-3-butenyl isothiocyanate-cysteine, and 4-methylsulfinyl-3-butenylglucosinolate-N-acetyl cysteine were reported for the first time in human urine. The combination of non-targeted and targeted metabolomic approaches can gain a full metabolite profile for human dietary intervention studies.

5.
Front Nutr ; 7: 575092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072799

RESUMO

Introduction: Preclinical studies suggest that brassica vegetable diets decrease cancer risk, but epidemiological studies show varied effects, resulting in uncertainty about any health impact of brassicas. Factors controlling absorption of glucosinolate metabolites may relate to inconsistent results. We reported previously that subjects with BMI > 26 kg/m2 (HiBMI), given cooked broccoli plus raw daikon radish (as a source of plant myrosinase) daily for 17 days, had lower glucosinolate metabolite absorption than subjects given a single broccoli meal. This difference was not seen in subjects with BMI < 26 kg/m2 (LoBMI). Our objective in this current study was to determine whether a similar response occurred when cooked broccoli was consumed without a source of plant myrosinase. Methods: In a randomized crossover study (n = 18), subjects consumed no broccoli for 16 days or the same diet with 200 g of cooked broccoli daily for 15 days and 100 g of broccoli on day 16. On day 17, all subjects consumed 200 g of cooked broccoli. Plasma and urine were collected for 24 h and analyzed for glucosinolate metabolites by LC-MS. Results: There was no effect of diet alone or interaction of diet with BMI. However, absorption doubled in HiBMI subjects (AUC 219%, plasma mass of metabolites 202% compared to values for LoBMI subjects) and time to peak plasma metabolite values and 24-h urinary metabolites also increased, to 127 and 177% of LoBMI values, respectively. Conclusion: BMI impacts absorption and metabolism of glucosinolates from cooked broccoli, and this association must be further elucidated for more efficacious dietary recommendations. Clinical Trial Registration: This trial was registered at clinicaltrials.gov (NCT03013465).

6.
Food Chem ; 309: 125660, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31670121

RESUMO

Broccoli is a popular brassica vegetable and its consumption may decrease the occurrence of cancer in certain populations. To gain insight into the metabolites that may induce physiological responses to broccoli intake, a non-targeted metabolomic approach and a targeted approach for analysis of glucosinolate metabolites were developed using high resolution accurate mass spectrometry. A human study was conducted in which 6 subjects consumed a single meal of 200 g of uncooked broccoli florets. The metabolomic analysis revealed changes in endogenous metabolites and a decrease in hippuric acid after broccoli consumption. Targeted analysis using high-resolution, accurate mass-mass spectrometry (HRAM-MS) enabled detection of low concentrations (nM) of glucosinolate metabolites in human urine and plasma. Glucosinolate metabolites were found in human urine (13) and plasma (8), respectively. Metabolites from methoxyl-indole glucosinolates, arising from broccoli consumption, are reported for the first time. Most glucosinolate metabolites reached their peak concentration in urine 2-4 h after consumption while, in plasma, peak maxima were achieved 2 h after intake. The results suggest that glucoraphanin metabolites (sulforaphane, sulforaphane cysteine, sulforaphane N-acetyl cysteine) and indole metabolites (ascorbigen and methoxyl ascorbigen from indole glucosinolates) may serve as marker compounds for the intake of broccoli.


Assuntos
Brassica/metabolismo , Glucosinolatos/urina , Metabolômica/métodos , Adulto , Idoso , Brassica/química , Feminino , Glucosinolatos/sangue , Glucosinolatos/química , Glucosinolatos/metabolismo , Humanos , Imidoésteres/química , Imidoésteres/metabolismo , Indóis/química , Limite de Detecção , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Oximas , Análise de Componente Principal , Sulfóxidos
7.
J Nutr Biochem ; 63: 27-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30317146

RESUMO

The human gastrointestinal microbiota is increasingly linked to health outcomes; however, our understanding of how specific foods alter the microbiota is limited. Cruciferous vegetables such as broccoli are a good source of dietary fiber and phytonutrients, including glucosinolates, which can be metabolized by gastrointestinal microbes. This study aimed to determine the impact of broccoli consumption on the gastrointestinal microbiota of healthy adults. A controlled feeding, randomized, crossover study consisting of two 18-day treatment periods separated by a 24-day washout was conducted in healthy adults (n=18). Participants were fed at weight maintenance with the intervention period diet including 200 g of cooked broccoli and 20 g of raw daikon radish per day. Fecal samples were collected at baseline and at the end of each treatment period for microbial analysis. Beta diversity analysis indicated that bacterial communities were impacted by treatment (P=.03). Broccoli consumption decreased the relative abundance of Firmicutes by 9% compared to control (P=.05), increased the relative abundance of Bacteroidetes by 10% compared to control (P=.03) and increased Bacteroides by 8% relative to control (P=.02). Furthermore, the effects were strongest among participants with body mass index <26 kg/m2, and within this group, there were associations between bacterial relative abundance and glucosinolate metabolites. Functional prediction revealed that broccoli consumption increased the pathways involved in the functions of the endocrine system (P=.05), transport and catabolism (P=.04), and energy metabolism (P=.01). These results reveal that broccoli consumption affects the composition and function of the human gastrointestinal microbiota.


Assuntos
Brassica , Microbioma Gastrointestinal , Adulto , Idoso , Bacteroidetes , Índice de Massa Corporal , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade
8.
Br J Nutr ; 120(12): 1370-1379, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30499426

RESUMO

Sulphoraphane originates from glucoraphanin in broccoli and is associated with anti-cancer effects. A preclinical study suggested that daily consumption of broccoli may increase the production of sulphoraphane and sulphoraphane metabolites available for absorption. The objective of this study was to determine whether daily broccoli consumption alters the absorption and metabolism of isothiocyanates derived from broccoli glucosinolates. We conducted a randomised cross-over human study (n 18) balanced for BMI and glutathione S-transferase µ 1 (GSTM1) genotype in which subjects consumed a control diet with no broccoli (NB) for 16 d or the same diet with 200 g of cooked broccoli and 20 g of raw daikon radish daily for 15 d (daily broccoli, DB) and 100 g of broccoli and 10 g of daikon radish on day 16. On day 17, all subjects consumed a meal of 200 g of broccoli and 20 g of daikon radish. Plasma and urine were collected for 24 h and analysed for sulphoraphane and metabolites of sulphoraphane and erucin by triple quadrupole tandem MS. For subjects with BMI >26 kg/m2 (median), plasma AUC and urinary excretion rates of total metabolites were higher on the NB diet than on the DB diet, whereas for subjects with BMI <26 kg/m2, plasma AUC and urinary excretion rates were higher on the DB diet than on the NB diet. Daily consumption of broccoli interacted with BMI but not GSTM1 genotype to affect plasma concentrations and urinary excretion of glucosinolate-derived compounds believed to confer protection against cancer. This trial was registered as NCT02346812.


Assuntos
Índice de Massa Corporal , Brassica/química , Dieta , Glucosinolatos/química , Isotiocianatos/metabolismo , Acetilcisteína/química , Adulto , Idoso , Anticarcinógenos , Área Sob a Curva , Culinária , Estudos Cross-Over , Feminino , Genótipo , Glucose/análogos & derivados , Glucose/química , Glutationa Transferase/metabolismo , Glicosídeo Hidrolases/metabolismo , Humanos , Imidoésteres/química , Isotiocianatos/sangue , Isotiocianatos/química , Isotiocianatos/urina , Masculino , Manitol/química , Pessoa de Meia-Idade , Oximas , Raphanus , Sulfetos/sangue , Sulfetos/química , Sulfetos/urina , Sulfóxidos , Espectrometria de Massas em Tandem , Tiocianatos/sangue , Tiocianatos/química , Tiocianatos/urina
9.
J Agric Food Chem ; 65(13): 2694-2701, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28287259

RESUMO

As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 µM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 µM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 µM pretreated monolayers showed a significant (P < 0.05) decrease in the percentage of cumulative transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P < 0.05) alterations in mRNA expression of key phase II metabolizing enzymes and transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.


Assuntos
Diferenciação Celular , Mucosa Intestinal/metabolismo , Intestinos/citologia , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Rubus/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Células CACO-2 , Frutas/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Intestinos/enzimologia
10.
J Nutr ; 146(2): 444S-449S, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764328

RESUMO

There is a large body of preclinical research aimed at understanding the roles of garlic and garlic-derived preparations in the promotion of human health. Most of this research has targeted the possible functions of garlic in maintaining cardiovascular health and in preventing and treating cancer. A wide range of outcome variables has been used to investigate the bioactivity of garlic, ranging from direct measures of health status such as cholesterol concentrations, blood pressure, and changes in tumor size and number, to molecular and biochemical measures such as mRNA gene expression, protein concentration, enzyme activity, and histone acetylation status. Determination of how garlic influences mRNA gene expression has proven to be a valuable approach to elucidating the mechanisms of garlic bioactivity. Preclinical studies investigating the health benefits of garlic far outnumber human studies and have made frequent use of mRNA gene expression measurement. There is an immediate need to understand mRNA gene expression in humans as well. Although safety and ethical constraints limit the types of available human tissue, peripheral whole blood is readily accessible, and measuring mRNA gene expression in whole blood may provide a unique window to understanding how garlic intake affects human health.


Assuntos
Doenças Cardiovasculares/genética , Alho , Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Fitoterapia , Extratos Vegetais/farmacologia , Sulfetos/farmacologia , Animais , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , RNA Mensageiro/metabolismo
11.
J Nutr ; 145(11): 2448-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26423732

RESUMO

BACKGROUND: Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. OBJECTIVE: We designed a study to probe the mechanisms of garlic action in humans. METHODS: We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 µL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. RESULTS: The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P < 0.05). The mRNA levels of 5 of the 7 genes that were upregulated in the human trial were also upregulated in cell culture at 3 and 6 h: AHR, HIF1A, JUN, OSM, and REL. Fold-increases in mRNA transcripts in cell culture ranged from 1.7 (HIF1A) to 12.1 (JUN) (P < 0.01). OSM protein was measured by ELISA and was significantly higher than the control at 3, 6, and 24 h (24 h: 19.5 ± 1.4 and 74.8 ± 1.4 pg/mL for control and garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. CONCLUSION: These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591.


Assuntos
Administração Oral , Linfócitos B/imunologia , Alho , Linfócitos T/imunologia , Translocador Nuclear Receptor Aril Hidrocarboneto/sangue , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/sangue , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Estudos Cross-Over , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Oncostatina M/sangue , Oncostatina M/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-jun/sangue , Proteínas Proto-Oncogênicas c-jun/genética , RNA Mensageiro/sangue , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/sangue , Receptores de Hidrocarboneto Arílico/genética , Fator de Transcrição RelA/sangue , Fator de Transcrição RelA/genética , Regulação para Cima
12.
J Nutr ; 145(6): 1185-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904733

RESUMO

BACKGROUND: Cardiometabolic risk is the risk of cardiovascular disease (CVD), diabetes, or stroke, which are leading causes of mortality and morbidity worldwide. OBJECTIVE: The objective of this study was to determine the potential of low-calorie cranberry juice (LCCJ) to lower cardiometabolic risk. METHODS: A double-blind, placebo-controlled, parallel-arm study was conducted with controlled diets. Thirty women and 26 men (mean baseline characteristics: 50 y; weight, 79 kg; body mass index, 28 kg/m(2)) completed an 8-wk intervention with LCCJ or a flavor/color/energy-matched placebo beverage. Twice daily volunteers consumed 240 mL of LCCJ or the placebo beverage, containing 173 or 62 mg of phenolic compounds and 6.5 or 7.5 g of total sugar per 240-mL serving, respectively. RESULTS: Fasting serum triglycerides (TGs) were lower after consuming LCCJ and demonstrated a treatment × baseline interaction such that the participants with higher baseline TG concentrations were more likely to experience a larger treatment effect (1.15 ± 0.04 mmol/L vs. 1.25 ± 0.04 mmol/L, respectively; P = 0.027). Serum C-reactive protein (CRP) was lower for individuals consuming LCCJ than for individuals consuming the placebo beverage [ln transformed values of 0.522 ± 0.115 ln(mg/L) vs. 0.997 ± 0.120 ln(mg/L), P = 0.0054, respectively, and equivalent to 1.69 mg/L vs. 2.71 mg/L back-transformed]. LCCJ lowered diastolic blood pressure (BP) compared with the placebo beverage (69.2 ± 0.8 mm Hg for LCCJ vs. 71.6 ± 0.8 mm Hg for placebo; P = 0.048). Fasting plasma glucose was lower (P = 0.03) in the LCCJ group (5.32 ± 0.03 mmol/L) than in the placebo group (5.42 ± 0.03 mmol/L), and LCCJ had a beneficial effect on homeostasis model assessment of insulin resistance for participants with high baseline values (P = 0.035). CONCLUSION: LCCJ can improve several risk factors of CVD in adults, including circulating TGs, CRP, and glucose, insulin resistance, and diastolic BP. This trial was registered at clinicaltrials.gov as NCT01295684.


Assuntos
Bebidas , Biomarcadores/sangue , Doenças Cardiovasculares/epidemiologia , Síndrome Metabólica/epidemiologia , Vaccinium macrocarpon/química , Adulto , Idoso , Glicemia/metabolismo , Pressão Sanguínea , Índice de Massa Corporal , Peso Corporal , Proteína C-Reativa/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Método Duplo-Cego , Jejum , Feminino , Frutas/química , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
13.
J Nutr Biochem ; 24(5): 894-902, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22902324

RESUMO

Allyl isothiocyanate (AITC) is a dietary component with possible anticancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n=46) consumed AITC, AITC-rich vegetables [mustard and cabbage (M/C)] or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells was assessed by single-cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and creatinine. Ten-day intake of neither AITC nor M/C resulted in statistically significant differences in DNA strand breaks [least squares mean (LSmean) % DNA in tail±S.E.M.: 4.8±0.6 for control, 5.7±0.7 for AITC, 5.3±0.6 for M/C] or urinary 8-oxodG (LSmean µg 8-oxodG/g creatinine±S.E.M.: 2.95±0.09 for control, 2.88±0.09 for AITC, 3.06±0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3 h postconsumption (LSmean % DNA in tail±S.E.M.: 3.2±0.7 for control, 8.3±1.7 for AITC, 8.0±1.7 for M/C), and this difference disappeared at 6 h (4.2±0.9 for control, 5.7±1.2 for AITC, 5.5±1.2 for M/C). Genotypes for GSTM1, GSTT1 and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair.


Assuntos
Brassica/química , Dano ao DNA/efeitos dos fármacos , Isotiocianatos/administração & dosagem , Extratos Vegetais/administração & dosagem , Verduras/química , 8-Hidroxi-2'-Desoxiguanosina , Ensaio Cometa , Creatinina/urina , Estudos Cross-Over , Reparo do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Dieta , Feminino , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
14.
J Agric Food Chem ; 57(4): 1226-30, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19166298

RESUMO

Absorption of cyanidin-based anthocyanins is not fully understood with respect to dose or anthocyanin structure. In feeding studies using whole foods, nonacylated anthocyanins are more bioavailable than their acylated counterparts, but the extent to which plant matrix determines relative bioavailability of anthocyanins is unknown. Using juice of purple carrots to circumvent matrix effects, a feeding trial was conducted to determine relative bioavailability of acylated and nonacylated anthocyanins and to assess dose-response effects. Appearance of anthocyanins in plasma was measured in 10 healthy adults for 8 h following consumption of purple carrot juice. Each subject consumed 50, 150, and 250 mL of juice containing 76 micromol (65 mg), 228 micromol (194 mg), and 380 micromol (323 mg) of total anthocyanins, respectively. Acylated anthocyanins comprised 76% of total anthocyanins in the juice, yet their bioavailability was found to be significantly less than that of nonacylated anthocyanins. Peak plasma concentrations of nonacylated anthocyanins were 4-fold higher than that for acylated anthocyanins. Absorption efficiency declined across the doses administered. Because the treatments were consumed as juice, it could be discerned that the difference in bioavailability of acylated versus nonacylated anthocyanins was not primarily caused by interactions with the plant matrix.


Assuntos
Antocianinas/farmacocinética , Bebidas/análise , Daucus carota/química , Acilação , Adulto , Antocianinas/administração & dosagem , Antocianinas/química , Disponibilidade Biológica , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Relação Estrutura-Atividade
15.
J Agric Food Chem ; 55(13): 5354-62, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17542615

RESUMO

Recent studies indicate that anthocyanin intake conveys a variety of health benefits, which depend on absorption and metabolic mechanisms that deliver anthocyanins and their bioactive metabolites to responsive tissues. The anthocyanin bioavailability of red cabbage (Brassica oleracea L. var. capitata) was evaluated as reflected by urinary excretion of anthocyanins and anthocyanin metabolites. Twelve volunteers consumed 100, 200, and 300 g of steamed red cabbage (containing 1.38 micromol of anthocyanins/g of cabbage) in a crossover design. Anthocyanin concentration in cabbage extract and urine was measured by HPLC-MS/MS. Six nonacylated and 30 acylated anthocyanins were detected in red cabbage, and 3 nonacylated anthocyanins, 8 acylated anthocyanins, and 4 metabolites were present in urine. Mean 24 h excretion of intact anthocyanins increased linearly from 45 (100 g dose) to 65 nmol (300 g dose) for acylated anthocyanins and from 52 (100 g dose) to 79 nmol (300 g dose) for nonacylated anthocyanins. Urinary recovery of intact anthocyanins (percent of anthocyanin intake) decreased linearly from 0.041% (100 g dose) to 0.020% (300 g dose) for acylated anthocyanins and from 0.18% (100 g dose) to 0.09% (300 g dose) for nonacylated anthocyanins. Anthocyanin metabolites consisted of glucuronidated and methylated anthocyanins. The results show that red cabbage anthocyanins were excreted in both intact and metabolized forms and that recovery of nonacylated anthocyanins in urine was >4-fold that of acylated anthocyanins.


Assuntos
Antocianinas/farmacocinética , Brassica/química , Acilação , Antocianinas/administração & dosagem , Antocianinas/urina , Disponibilidade Biológica , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
J Agric Food Chem ; 53(18): 7128-35, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16131120

RESUMO

Twelve isoflavones were detected by high-performance liquid chromatography in seeds of 17 soybean [Glycine max (L.) Merrill] cultivars grown at three locations. 6' '-O-Malonyldaidzin and 6' '-O-malonylgenistin together constituted 71-81% of total isoflavones, which ranged in concentration from 2038 to 9514 microg/g and averaged 5644 microg/g across locations and cultivars. The total as well as several individual isoflavones had a moderate negative correlation with oil across locations and cultivars. Six cultivars had a moderate or strong negative correlation of total isoflavones with oil. Five cultivars had a moderate or strong positive correlation of total isoflavones with protein. These results suggest that judicious selection of germplasm for soybean breeding may facilitate development of soybean lines with desirable isoflavone concentrations.


Assuntos
Glycine max/química , Isoflavonas/análise , Sementes/química , Óleo de Soja/análise , Proteínas de Soja/análise , Espectroscopia de Luz Próxima ao Infravermelho
17.
Plant Dis ; 86(6): 629-632, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30823236

RESUMO

Glucosinolate degradation products are known to suppress microbes. Brassica species produce glucosinolates. Previous investigations determined that susceptibility to bacterial soft rot of broccoli (Brassica oleracea (Italica group)) varied significantly by cultivar. To evaluate the impact of glucosinolates on Pseudomonas marginalis, a causal agent of bacterial soft rot, glucosinolates were measured in lyophilized florets from broccoli 'Arcadia', 'Emperor', 'Green Comet', 'Green Valiant', 'Marathon', 'Packman', 'Premium Crop', and 'Shogun'. Total glucosinolate content was highest in 'Shogun' (29.8 µmol/g) and lowest in 'Emperor' (0.5 µmol/g). In an in vitro assay, simple linear regression analysis showed that 48% of differences in suppression of P. marginalis growth could be explained by differences in total glucosinolate content (P ≤ 0.01). Plant breeding efforts should include glucosinolate levels as a factor in selecting for disease resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...