Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 77: 441-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24148808

RESUMO

The two most studied endocannabinoids are anandamide (AEA), principally catalyzed by fatty-acid amide hydrolase (FAAH), and 2-arachidonoyl glycerol (2-AG), mainly hydrolyzed by monoacylglycerol lipase (MGL). Inhibitors targeting these two enzymes have been described, including URB597 and URB602, respectively. Several recent studies examining the contribution of CB1 and/or CB2 receptors on the peripheral antinociceptive effects of AEA, 2-AG, URB597 and URB602 in neuropathic pain conditions using either pharmacological tools or transgenic mice separately have been reported, but the exact mechanism is still uncertain. Mechanical allodynia and thermal hyperalgesia were evaluated in 436 male C57BL/6, cnr1KO and cnr2KO mice in the presence or absence of cannabinoid CB1 (AM251) or CB2 (AM630) receptor antagonists in a mouse model of neuropathic pain. Peripheral subcutaneous injections of AEA, 2-AG, WIN55,212-2 (WIN; a CB1/CB2 synthetic agonist), URB597 and URB602 significantly decreased mechanical allodynia and thermal hyperalgesia. These effects were inhibited by both cannabinoid antagonists AM251 and AM630 for treatments with 2-AG, WIN and URB602 but only by AM251 for treatments with AEA and URB597 in C57BL/6 mice. Furthermore, the antinociceptive effects for AEA and URB597 were observed in cnr2KO mice but absent in cnr1KO mice, whereas the effects of 2-AG, WIN and URB602 were altered in both of these transgenic mice. Complementary genetic and pharmacological approaches revealed that the anti-hyperalgesic effects of 2-AG and URB602 required both CB1 and CB2 receptors, but only CB2 receptors mediated its anti-allodynic actions. The antinociceptive properties of AEA and URB597 were mediated only by CB1 receptors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Glicerídeos/farmacologia , Glicerídeos/uso terapêutico , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neuralgia/metabolismo , Medição da Dor , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores
2.
J Hypertens ; 26(5): 893-901, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18398331

RESUMO

OBJECTIVE: Although genetic mapping of quantitative trait loci for blood pressure to large chromosome segments is readily achievable, their final identification confronts formidable hurdles. Restriction of the genes lodging in one quantitative trait locus interval to experimental limitation can facilitate their positional cloning. We previously delineated several quantitative trait loci for blood pressure on chromosome 10 of Dahl salt-sensitive rats, but their chromosome delimitations were either large or not definitive. METHODS: In this study, we systematically and comprehensively constructed congenic strains with submegabase (Mb) genome resolution and analyzed their blood pressure by telemetry. RESULTS: Three quantitative trait loci have been conclusively delimited by three congenic strains, each independently lowering the blood pressure. Their intervals are demarcated by genomic regions between 350 and 910 kilobases (kb) in size. Two of the three quantitative trait loci share an epistatic relationship and are separated from one another by less than 170 kb. Two additional quantitative trait loci for blood pressure were also tentatively delineated and their intervals range from 520 kb to 1.75 Mb. Possible genes dwelling in each quantitative trait locus-interval number between 11 and 17. None of these genes is known to exert a functional impact on blood pressure. Work is underway to find candidate genes with mutations that could be responsible for the blood pressure effect. CONCLUSION: Novel diagnostic, prognostic, preventive and/or therapeutic targets for essential hypertension and hypertension-associated diseases are likely to emerge from the identification of these quantitative trait loci. Potential applications of these quantitative trait loci to humans are suggested from the positive results from several association studies, demonstrating the existence of quantitative trait loci in the broad homologous regions.


Assuntos
Pressão Sanguínea/genética , Epistasia Genética , Hipertensão/genética , Locos de Características Quantitativas/genética , Animais , Monitorização Ambulatorial da Pressão Arterial , Mapeamento Cromossômico , Ratos , Ratos Endogâmicos Dahl/genética
3.
Mamm Genome ; 17(12): 1147-61, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17143582

RESUMO

Blood pressure (BP) is largely determined by quantitative trait loci (QTLs) in Dahl salt-sensitive (DSS) rats. Little is known about QTLs controlling kidney (K), cardiac (C), and aortic (A) mass (i.e. Km, Cm, and Am, respectively) of DSS rats independent of BP. Their identification can facilitate our understanding of end organ damage. In this work, 36 congenic strains were employed to define QTLs for Km, Cm, and Am either independent of or associated with BP. Five new QTLs, i.e., KmQTLs, that influence Km independent of Cm, Am, and BP were defined. Four new CakmQTLs were defined for Cm, Am, and Km independent of BP. Among them, the CakmC10QTL1 interval contained 13 genes and undefined loci, and none was known to influence the phenotypes in question, paving the way for a novel gene discovery. Among 17 individual QTLs for BP, 14 also affected Cm, Km, and Am, i.e., they are BpcakmQTLs. In contrast, one BpQTL had no effect on Cm, Am, and Kam. Therefore, BP and Cm, Am, and Km have distinct and shared genetic determinants. The discovery of individual Km and Cakm QTLs will likely facilitate the identification of mechanisms underlying renal, cardiac, and/or aortic hypertrophy independent of hypertension.


Assuntos
Doenças da Aorta/genética , Pressão Sanguínea/genética , Cardiomiopatias/genética , Hipertensão/genética , Nefropatias/genética , Locos de Características Quantitativas , Animais , Animais Congênicos , Mapeamento Cromossômico , Cromossomos de Mamíferos , Cruzamentos Genéticos , Feminino , Masculino , Fenótipo , Ratos , Ratos Endogâmicos Dahl
4.
Hypertension ; 46(6): 1300-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16286573

RESUMO

Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.


Assuntos
Epistasia Genética , Hipertensão/genética , Locos de Características Quantitativas , Ratos Endogâmicos Dahl/genética , Animais , Animais Congênicos , Pressão Sanguínea/genética , Mapeamento Cromossômico , Predisposição Genética para Doença , Humanos , Ratos
5.
Hum Mol Genet ; 14(24): 3877-84, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16278234

RESUMO

Essential hypertension is a complex trait influenced by multiple genes known as quantitative trait loci (QTLs) for blood pressure (BP). It is not clear, however, what roles these QTLs play in maintaining normotension. Insights gained toward the maintenance of normotension will shed light on how hypertension can result from a deficiency or malfunctioning of this maintenance. Currently, congenic strains were systematically constructed using Dahl salt-sensitive (DSS) and Lewis (LEW) rats not only to define QTLs (i.e. in DSS background), but also to ascertain effects of the same QTLs in preserving normotension (i.e. in LEW background), a first such study. Results showed that although LEW alleles for two QTLs on Chromosome (Chr) 18 lowered BP on the DSS background, their BP-increasing DSS alleles failed to influence BP in the LEW background. To further prove that the LEW background is resistant and the DSS background is susceptible to the effects of QTLs, BP-increasing alleles of a QTL on Chr 2 were introgressed into the DSS background, and its BP-decreasing alleles into the LEW background. Indeed, there was no BP-decreasing effect on the LEW background while demonstrating a BP-increasing effect on the DSS background. Thus, a genetic regulation of BP QTLs in the LEW genome inhibits BP changes by nullifying the effects of BP-altering QTLs. In comparison, the DSS genome must have lost the buffering capacity for stabilizing BP. The current work presents good evidence that a lack of regulation for functions of BP QTLs is a potential underlying cause of hypertension.


Assuntos
Pressão Sanguínea/genética , Hipertensão/genética , Locos de Características Quantitativas , Ratos Endogâmicos Dahl/genética , Animais , Animais Congênicos , Cromossomos , Feminino , Genoma , Masculino , Ratos , Ratos Endogâmicos Lew , Valores de Referência
6.
Hypertension ; 45(4): 557-64, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15738349

RESUMO

Our previous work demonstrated 2 quantitative trait loci (QTLs), C2QTL1 and C2QTL2, for blood pressure (BP) located on chromosome (Chr) 2 of Dahl salt-sensitive (DSS) rats. However, for a lack of markers, the 2 congenic strains delineating C2QTL1 and C2QTL2 could not be separated. The position of the C2QTL1 was only inferred by comparing 2 congenic strains, one having and another lacking a BP effect. Furthermore, it was not known how adjacent QTLs would interact with one another on Chr 2. In the current investigation, first, a critical chromosome marker was developed to separate 2 C2QTLs. Second, a congenic substrain was created to cover a chromosome fragment thought to harbor C2QTL1. Finally, a series of congenic strains was produced to systematically and comprehensively cover the entire Chr 2 segment containing C2QTL2 and other regions previously untested. Consequently, a total of 3 QTLs were discovered, with C2QTL3 located between C2QTL1 and C2QTL2. C2QTL1, C2QTL2, and C2QTL3 reside in chromosome segments of 5.7 centiMorgan (cM), 3.5 cM, and 1.5 cM, respectively. C2QTL1 interacted epistatically with either C2QTL2 or C2QTL3, whereas C2QTL2 and C2QTL3 showed additive effects to each other. These results suggest that BP QTLs closely linked in a segment interact epistatically and additively to one another on Chr 2.


Assuntos
Pressão Sanguínea/genética , Cromossomos/genética , Locos de Características Quantitativas , Ratos Endogâmicos Dahl/genética , Animais , Animais Congênicos/genética , Mapeamento Cromossômico , Marcadores Genéticos , Ratos
7.
Physiol Genomics ; 21(1): 112-6, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15632271

RESUMO

Linkage studies suggested that a quantitative trait locus (QTL) for blood pressure (BP) was present in a region on chromosome 17 (Chr 17) of Dahl salt-sensitive (DSS) rats. A subsequent congenic strain targeting this QTL, however, could not confirm it. These conflicting results called into question the validity of localization of a QTL by linkage followed by the use of a congenic strain made with an incomplete chromosome coverage. To resolve this issue, we constructed five new congenic strains, designated C17S.L1 to C17S.L5, that completely spanned the +/-2 LOD confidence interval supposedly containing the QTL. Each congenic strain was made by replacing a segment of the DSS rat by that of the normotensive Lewis (LEW) rat. The only section to be LL homozygous is the region on Chr 17 specified in a congenic strain, as evidenced by a total genome scan. The results showed that BPs of C17S.L1 and C17S.L2 were lower (P < 0.04) than that of DSS rats. In contrast, BPs of C17S.L3, C17S.L4, and C17S.L5 were not different (P > 0.6) from that of DSS rats. Consequently, a BP QTL must be located in an interval of approximately 15 cM shared between C17S.L1 and C17S.L2 and unique to them both, as opposed to C17S.L3, C17S.L4, and C17S.L5. The present study illustrates the importance of thorough chromosome coverage, the necessity for a genome-wide screening, and the use of "negative" controls in physically mapping a QTL by congenic strains.


Assuntos
Pressão Sanguínea/genética , Hipertensão/genética , Animais , Animais Congênicos , Mapeamento Cromossômico , Cromossomos/ultraestrutura , Ligação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Genoma , Homozigoto , Escore Lod , Modelos Genéticos , Modelos Estatísticos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Ratos , Ratos Endogâmicos Dahl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...