Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38935868

RESUMO

RATIONALE: While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. OBJECTIVES: Our goals were to identify emphysema-associated biological pathways through transcriptomic analysis of bulk lung tissue, to determine the lung cell types in which these emphysema-associated pathways are altered, and to detect unique and overlapping transcriptomic signatures in blood and lung samples. METHODS: Using RNA-sequencing data from 446 samples in the Lung Tissue Research Consortium (LTRC) and 3,606 blood samples from the COPDGene study, we examined the transcriptomic features of chest computed tomography-quantified emphysema. We also leveraged publicly available lung single-cell RNA-sequencing data to identify cell types showing COPD-associated differential expression of the emphysema pathways found in the bulk analyses. MEASUREMENTS AND MAIN RESULTS: In the bulk lung RNA-seq analysis, 1,087 differentially expressed genes and 34 dysregulated pathways were significantly associated with emphysema. We observed alternative splicing of several genes and increased activity in pluripotency and cell barrier function pathways. Lung tissue and blood samples shared differentially expressed genes and biological pathways. Multiple lung cell types displayed dysregulation of epithelial barrier function pathways, and distinct pathway activities were observed among various macrophage subpopulations. CONCLUSIONS: This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.

2.
Hum Mol Genet ; 33(13): 1164-1175, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38569558

RESUMO

While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).


Assuntos
Regiões 3' não Traduzidas , Estudo de Associação Genômica Ampla , Pulmão , Poliadenilação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Humanos , Regiões 3' não Traduzidas/genética , Poliadenilação/genética , Pulmão/metabolismo , Masculino , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/genética , Feminino , Regulação da Expressão Gênica/genética
3.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567749

RESUMO

Vitamin D possesses immunomodulatory functions and vitamin D deficiency has been associated with the rise in chronic inflammatory diseases, including asthma (Litonjua and Weiss, 2007). Vitamin D supplementation studies do not provide insight into the molecular genetic mechanisms of vitamin D-mediated immunoregulation. Here, we provide evidence for vitamin D regulation of two human chromosomal loci, Chr17q12-21.1 and Chr17q21.2, reliably associated with autoimmune and chronic inflammatory diseases. We demonstrate increased vitamin D receptor (Vdr) expression in mouse lung CD4+ Th2 cells, differential expression of Chr17q12-21.1 and Chr17q21.2 genes in Th2 cells based on vitamin D status and identify the IL-2/Stat5 pathway as a target of vitamin D signaling. Vitamin D deficiency caused severe lung inflammation after allergen challenge in mice that was prevented by long-term prenatal vitamin D supplementation. Mechanistically, vitamin D induced the expression of the Ikzf3-encoded protein Aiolos to suppress IL-2 signaling and ameliorate cytokine production in Th2 cells. These translational findings demonstrate mechanisms for the immune protective effect of vitamin D in allergic lung inflammation with a strong molecular genetic link to the regulation of both Chr17q12-21.1 and Chr17q21.2 genes and suggest further functional studies and interventional strategies for long-term prevention of asthma and other autoimmune disorders.


Assuntos
Asma , Pneumonia , Deficiência de Vitamina D , Camundongos , Animais , Humanos , Vitamina D/farmacologia , Interleucina-2 , Inflamação , Células Th2 , Deficiência de Vitamina D/metabolismo , Vitaminas
4.
medRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260473

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.

5.
J Allergy Clin Immunol ; 153(3): 695-704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056635

RESUMO

BACKGROUND: Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE: We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS: We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS: Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION: piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.


Assuntos
Asma , RNA de Interação com Piwi , Criança , Humanos , RNA Interferente Pequeno/genética , Asma/genética , Imunoglobulina E/genética , Fenótipo
6.
Gastroenterology ; 165(3): 773-783.e15, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302558

RESUMO

BACKGROUND & AIMS: This study assessed the worldwide burden of digestive diseases between 1990 and 2019. METHODS: We analyzed data from the Global Burden of Diseases study, covering 18 digestive diseases across 204 countries and territories. Key disease burden indicators, including incidence, prevalence, mortality, and disability-adjusted life years (DALYs), were studied. Linear regression analysis was applied to the natural logarithm of age-standardized outcomes to determine the annual percent change. RESULTS: In 2019, there were 7.32 billion incidents and 2.86 billion prevalent cases of digestive diseases, resulting in 8 million deaths and 277 million DALYs lost. Little to no decrease in global age-standardized incidence and prevalence of digestive diseases was observed between 1990 and 2019, with 95,582 and 35,106 cases per 100,000 individuals in 2019, respectively. The age-standardized death rate was 102 per 100,000 individuals. Digestive diseases accounted for a significant portion of the overall disease burden, with more than one-third of prevalent cases having a digestive etiology. Enteric infections were the primary contributor to incidence, death, and DALYs lost, whereas cirrhosis and other chronic liver diseases had the highest prevalence rate. The burden of digestive diseases was inversely related to the sociodemographic index, with enteric infections being the predominant cause of death in low and low-middle quintiles and colorectal cancer in the high quintile. CONCLUSIONS: Despite significant reductions in deaths and DALYs due to digestive diseases from 1990 to 2019, they remain prevalent. A significant disparity in the burden of digestive diseases exists among countries with different development levels.


Assuntos
Efeitos Psicossociais da Doença , Carga Global da Doença , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Cirrose Hepática , Saúde Global , Incidência , Fatores de Risco
7.
Am J Respir Crit Care Med ; 208(3): 247-255, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286295

RESUMO

Rationale: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPDs) are associated with a significant disease burden. Blood immune phenotyping may improve our understanding of a COPD endotype at increased risk of exacerbations. Objective: To determine the relationship between the transcriptome of circulating leukocytes and COPD exacerbations. Methods: Blood RNA sequencing data (n = 3,618) from the COPDGene (Genetic Epidemiology of COPD) study were analyzed. Blood microarray data (n = 646) from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study were used for validation. We tested the association between blood gene expression and AE-COPDs. We imputed the abundance of leukocyte subtypes and tested their association with prospective AE-COPDs. Flow cytometry was performed on blood in SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) (n = 127), and activation markers for T cells were tested for association with prospective AE-COPDs. Measurements and Main Results: Exacerbations were reported 4,030 and 2,368 times during follow-up in COPDGene (5.3 ± 1.7 yr) and ECLIPSE (3 yr), respectively. We identified 890, 675, and 3,217 genes associated with a history of AE-COPDs, persistent exacerbations (at least one exacerbation per year), and prospective exacerbation rate, respectively. In COPDGene, the number of prospective exacerbations in patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stage ⩾2) was negatively associated with circulating CD8+ T cells, CD4+ T cells, and resting natural killer cells. The negative association with naive CD4+ T cells was replicated in ECLIPSE. In the flow-cytometry study, an increase in CTLA4 on CD4+ T cells was positively associated with AE-COPDs. Conclusions: Individuals with COPD with lower circulating lymphocyte counts, particularly decreased CD4+ T cells, are more susceptible to AE-COPDs, including persistent exacerbations.


Assuntos
Linfócitos T CD8-Positivos , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Prospectivos , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/complicações , Transcriptoma
8.
Sci Rep ; 13(1): 1357, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693932

RESUMO

Detection of viruses by RNA and DNA sequencing has improved the understanding of the human virome. We sought to identify blood viral signatures through secondary use of RNA-sequencing (RNA-seq) data in a large study cohort. The ability to reveal undiagnosed infections with public health implications among study subjects with available sequencing data could enable epidemiologic surveys and may lead to diagnosis and therapeutic interventions, leveraging existing research data in a clinical context. We detected viral RNA in peripheral blood RNA-seq data from a COPD-enriched population of current and former smokers. Correlation between viral detection and both reported infections and relevant disease outcomes was evaluated. We identified Hepatitis C virus RNA in 228 subjects and HIV RNA in 30 subjects. Overall, we observed 31 viral species, including Epstein-Barr virus and Cytomegalovirus. We observed an enrichment of Hepatitis C and HIV infections among subjects reporting liver disease and HIV infections, respectively. Higher interferon expression scores were observed in the subjects with Hepatitis C and HIV infections. Through secondary use of RNA-seq from a cohort of current and former smokers, we detected peripheral blood viral signatures. We identified HIV and Hepatitis C virus (HCV), highlighting potential public health implications for the approach described this study. We observed correlations with reported infections, chronic infection outcomes and the host transcriptomic response, providing evidence to support the validity of the approach.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por HIV , Hepatite C , Humanos , Hepacivirus/genética , Infecções por HIV/diagnóstico , Infecções por HIV/genética , Infecções por HIV/complicações , Infecções por Vírus Epstein-Barr/complicações , Fumantes , Herpesvirus Humano 4/genética , Hepatite C/diagnóstico , Hepatite C/genética , Hepatite C/complicações , RNA , RNA Viral/genética
9.
BMJ Open Respir Res ; 9(1)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35999035

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) can progress across several domains, complicating the identification of the determinants of disease progression. In our previous work, we applied k-means clustering to spirometric and chest radiological measures to identify four COPD-related subtypes: 'relatively resistant smokers (RRS)', 'mild upper lobe-predominant emphysema (ULE)', 'airway-predominant disease (AD)' and 'severe emphysema (SE)'. In the current study, we examined the associations of these subtypes to longitudinal COPD-related health measures as well as blood transcriptomic and plasma proteomic biomarkers. METHODS: We included 8266 non-Hispanic white and African-American smokers from the COPDGene study. We used linear regression to investigate cluster associations to 5-year prospective changes in spirometric and radiological measures and to gene expression and protein levels. We used Cox-proportional hazard test to test for cluster associations to prospective exacerbations, comorbidities and mortality. RESULTS: The RRS, ULE, AD and SE clusters represented 39%, 15%, 26% and 20% of the studied cohort at baseline, respectively. The SE cluster had the greatest 5-year FEV1 (forced expiratory volume in 1 s) and emphysema progression, and the highest risks of exacerbations, cardiovascular disease and mortality. The AD cluster had the highest diabetes risk. After adjustments, only the SE cluster had an elevated respiratory mortality risk, while the ULE, AD and SE clusters had elevated all-cause mortality risks. These clusters also demonstrated differential protein and gene expression biomarker associations, mostly related to inflammatory and immune processes. CONCLUSION: COPD k-means subtypes demonstrate varying rates of disease progression, prospective comorbidities, mortality and associations to transcriptomic and proteomic biomarkers. These findings emphasise the clinical and biological relevance of these subtypes, which call for more study for translation into clinical practice. TRAIL REGISTRATION NUMBER: NCT00608764.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Biomarcadores , Análise por Conglomerados , Progressão da Doença , Enfisema/complicações , Humanos , Estudos Prospectivos , Proteômica , Doença Pulmonar Obstrutiva Crônica/complicações , Enfisema Pulmonar/complicações , Enfisema Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X
10.
Respir Res ; 23(1): 97, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449067

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are characterized by shared exposures and clinical features, but distinct genetic and pathologic features exist. These features have not been well-studied using large-scale gene expression datasets. We hypothesized that there are divergent gene, pathway, and cellular signatures between COPD and IPF. METHODS: We performed RNA-sequencing on lung tissues from individuals with IPF (n = 231) and COPD (n = 377) compared to control (n = 267), defined as individuals with normal spirometry. We grouped the overlapping differential expression gene sets based on direction of expression and examined the resultant sets for genes of interest, pathway enrichment, and cell composition. Using gene set variation analysis, we validated the overlap group gene sets in independent COPD and IPF data sets. RESULTS: We found 5010 genes differentially expressed between COPD and control, and 11,454 genes differentially expressed between IPF and control (1% false discovery rate). 3846 genes overlapped between IPF and COPD. Several pathways were enriched for genes upregulated in COPD and downregulated in IPF; however, no pathways were enriched for genes downregulated in COPD and upregulated in IPF. There were many myeloid cell genes with increased expression in COPD but decreased in IPF. We found that the genes upregulated in COPD but downregulated in IPF were associated with lower lung function in the independent validation cohorts. CONCLUSIONS: We identified a divergent gene expression signature between COPD and IPF, with increased expression in COPD and decreased in IPF. This signature is associated with worse lung function in both COPD and IPF.


Assuntos
Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNA , Transcriptoma/genética
11.
Thorax ; 77(5): 452-460, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580195

RESUMO

INTRODUCTION: Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS: We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS: PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS: Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.


Assuntos
Asma , Eosinófilos , Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Basófilos/patologia , Eosinófilos/patologia , Humanos , Inflamação , Pulmão , Escarro , Esteroides/uso terapêutico
12.
Thorax ; 77(2): 115-122, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34168019

RESUMO

RATIONALE: COPD can be assessed using multidimensional grading systems with components from three domains: pulmonary function tests, symptoms and systemic features. Clinically, measures may be used interchangeably, though it is not known if they share similar pathobiology. OBJECTIVE: To use RNA sequencing (RNA-seq) to determine if there is an overlap in the underlying biological mechanisms and consequences driving different components of the multidimensional grading systems. METHODS: Whole blood was collected for RNA-seq from current and former smokers in the Genetic Epidemiology of COPD study. We tested the overlap in gene expression and biological pathways associated with case-control status and quantitative COPD phenotypes within and between the three domains. RESULTS: In 2647 subjects, there were 3030 genes differentially expressed in any of the three domains or case-control status. There were five genes that overlapped between the three domains and case-control status, including G protein-coupled receptor 15(GPR15), sestrin 1 (SESN1) and interferon-induced guanylate-binding protein 1 (GBP1), which were associated with longitudinal decline in FEV1. The overlap between the three domains was enriched for pathways related to cellular components. CONCLUSIONS: We identified gene sets and pathways that overlap between 12 COPD-related phenotypes and case-control status. There were no pathways represented in the overlap between the three domains and case-control status, but we identified multiple genes that demonstrated a consistent pattern of expression across several of the phenotypes. Patterns of gene expression correlation were generally similar to the correlation of clinical phenotypes in the PFT and symptom domains but not the systemic features.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Expressão Gênica , Homologia de Genes , Humanos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNA
13.
J Clin Endocrinol Metab ; 107(2): e619-e630, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34514501

RESUMO

OBJECTIVE: To characterize longitudinal changes in blood biomarkers, leukocyte composition, and gene expression following laparoscopic sleeve gastrectomy (LSG). BACKGROUND: LSG is an effective treatment for obesity, leading to sustainable weight loss and improvements in obesity-related comorbidities and inflammatory profiles. However, the effects of LSG on immune function and metabolism remain uncertain. METHODS: Prospective data were collected from 23 enrolled human subjects from a single institution. Parameters of weight, comorbidities, and trends in blood biomarkers and leukocyte subsets were observed from preoperative baseline to 1 year postsurgery in 3-month follow-up intervals. RNA sequencing was performed on pairs of whole blood samples from the first 6 subjects of the study (baseline and 3 months postsurgery) to identify genome-wide gene expression changes associated with undergoing LSG. RESULTS: LSG led to a significant decrease in mean total body weight loss (18.1%) at 3 months and among diabetic subjects a reduction in hemoglobin A1c. Improvements in clinical inflammatory and hormonal biomarkers were demonstrated as early as 3 months after LSG. A reduction in neutrophil-lymphocyte ratio was observed, driven by a reduction in absolute neutrophil counts. Gene set enrichment analyses of differential whole blood gene expression demonstrated that after 3 months LSG induced transcriptomic changes not only in inflammatory cytokine pathways but also in several key metabolic pathways related to energy metabolism. CONCLUSIONS: LSG induces significant changes in the composition and metabolism of immune cells as early as 3 months postoperatively. Further evaluation is required of bariatric surgery's effects on immunometabolism and the consequences for host defense and metabolic disease.


Assuntos
Cirurgia Bariátrica/métodos , Gastrectomia/métodos , Laparoscopia , Leucócitos/imunologia , Obesidade Mórbida/cirurgia , Adulto , Feminino , Seguimentos , Humanos , Contagem de Leucócitos , Leucócitos/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/imunologia , Obesidade Mórbida/metabolismo , Período Pós-Operatório , Estudos Prospectivos , RNA-Seq , Transcriptoma/imunologia , Redução de Peso/imunologia
14.
Eur Respir J ; 59(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34649980

RESUMO

BACKGROUND: The molecular basis of airway remodelling in chronic obstructive pulmonary disease (COPD) remains poorly understood. We identified gene expression signatures associated with chest computed tomography (CT) scan airway measures to understand molecular pathways associated with airway disease. METHODS: In 2396 subjects in the COPDGene Study, we examined the relationship between quantitative CT airway phenotypes and blood transcriptomes to identify airway disease-specific genes and to define an airway wall thickness (AWT) gene set score. Multivariable regression analyses were performed to identify associations of the AWT score with clinical phenotypes, bronchial gene expression and genetic variants. RESULTS: Type 1 interferon (IFN)-induced genes were consistently associated with AWT, square root wall area of a hypothetical airway with 10 mm internal perimeter (Pi10) and wall area percentage, with the strongest enrichment in AWT. A score derived from 18 genes whose expression was associated with AWT was associated with COPD-related phenotypes including reduced lung function (forced expiratory volume in 1 s percentage predicted ß= -3.4; p<0.05) and increased exacerbations (incidence rate ratio 1.7; p<0.05). The AWT score was reproducibly associated with AWT in bronchial samples from 23 subjects (ß=3.22; p<0.05). The blood AWT score was associated with genetic variant rs876039, an expression quantitative trait locus for IKZF1, a gene that regulates IFN signalling and is associated with inflammatory diseases. CONCLUSIONS: A gene expression signature with IFN-stimulated genes from peripheral blood and bronchial brushings is associated with CT AWT, lung function and exacerbations. Shared genes and genetic associations suggest viral responses and/or autoimmune dysregulation as potential underlying mechanisms of airway disease in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Transtornos Respiratórios , Volume Expiratório Forçado , Perfilação da Expressão Gênica , Humanos , Interferons/genética , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética
15.
Sci Rep ; 11(1): 19875, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615932

RESUMO

The human microbiome has a role in the development of multiple diseases. Individual microbiome profiles are highly personalized, though many species are shared. Understanding the relationship between the human microbiome and disease may inform future individualized treatments. We hypothesize the blood microbiome signature may be a surrogate for some lung microbial characteristics. We sought associations between the blood microbiome signature and lung-relevant host factors. Based on reads not mapped to the human genome, we detected microbial nucleic acids through secondary use of peripheral blood RNA-sequencing from 2,590 current and former smokers with and without chronic obstructive pulmonary disease (COPD) from the COPDGene study. We used the Genome Analysis Toolkit (GATK) microbial pipeline PathSeq to infer microbial profiles. We tested associations between the inferred profiles and lung disease relevant phenotypes and examined links to host gene expression pathways. We replicated our analyses using a second independent set of blood RNA-seq data from 1,065 COPDGene study subjects and performed a meta-analysis across the two studies. The four phyla with highest abundance across all subjects were Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. In our meta-analysis, we observed associations (q-value < 0.05) between Acinetobacter, Serratia, Streptococcus and Bacillus inferred abundances and Modified Medical Research Council (mMRC) dyspnea score. Current smoking status was associated (q < 0.05) with Acinetobacter, Serratia and Cutibacterium abundance. All 12 taxa investigated were associated with at least one white blood cell distribution variable. Abundance for nine of the 12 taxa was associated with sex, and seven of the 12 taxa were associated with race. Host-microbiome interaction analysis revealed clustering of genera associated with mMRC dyspnea score and smoking status, through shared links to several host pathways. This study is the first to identify a bacterial microbiome signature in the peripheral blood of current and former smokers. Understanding the relationships between systemic microbial signatures and lung-related phenotypes may inform novel interventions and aid understanding of the systemic effects of smoking.


Assuntos
Microbiota , Sepse/microbiologia , Fumantes , Idoso , Idoso de 80 Anos ou mais , Suscetibilidade a Doenças , Feminino , Seguimentos , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/etiologia , Testes de Função Respiratória , Sepse/diagnóstico , Sepse/etiologia , Fumar/efeitos adversos
16.
Sci Adv ; 7(30)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34301595

RESUMO

Epithelial tissue can transition from a jammed, solid-like, quiescent phase to an unjammed, fluid-like, migratory phase, but the underlying molecular events of the unjamming transition (UJT) remain largely unexplored. Using primary human bronchial epithelial cells (HBECs) and one well-defined trigger of the UJT, compression mimicking the mechanical effects of bronchoconstriction, here, we combine RNA sequencing data with protein-protein interaction networks to provide the first genome-wide analysis of the UJT. Our results show that compression induces an early transcriptional activation of the membrane and actomyosin network and a delayed activation of the extracellular matrix (ECM) and cell-matrix networks. This response is associated with a signaling cascade that promotes actin polymerization and cellular motility through the coordinated interplay of downstream pathways including ERK, JNK, integrin signaling, and energy metabolism. Moreover, in nonasthmatic versus asthmatic HBECs, common genomic patterns associated with ECM remodeling suggest a molecular connection between airway remodeling, bronchoconstriction, and the UJT.


Assuntos
Asma , Células Epiteliais , Asma/metabolismo , Movimento Celular/genética , Células Epiteliais/metabolismo , Epitélio/metabolismo , Genômica , Humanos
17.
Can J Respir Ther ; 57: 60-67, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164573

RESUMO

INTRODUCTION/BACKGROUND: Point-of-care testing (POCT) platforms support patient-centered approaches to health care delivery and may improve patient care. We evaluated implementation of a POCT platform at a large, acute care hospital in the Midwestern United States. METHODS: We used lactate testing as part of a sepsis bundle protocol to evaluate compliance and mortality outcomes. Respiratory team members were surveyed to assess perception of efficiency, ease of use, timely patient care, and overall engagement with the POCT system. Annualized cost per test of a benchtop analyzer and a POCT platform were compared across 3 years for each platform. RESULTS: Lactate testing volume increased from 61% to 91%, which was associated with improved sepsis bundle protocol compliance. Employees reported high levels of engagement, improvements in efficiency and time savings, and better patient care with POCT. Average cost per test was $10.02 for the benchtop system and $6.21 for the POCT platform. POCT saved our institution $88,476 annually in labor costs. DISCUSSION: Combined with a robust training program emphasizing the use of lactate testing in the context of the overall clinical picture, POCT enabled adherence to the sepsis bundle protocol and may have contributed to lower mortality. Additionally, the COVID-19 pandemic has provided us with unanticipated benefits of using POCT; it has enhanced our ability to deal with stringent infectious disease protocols, saving time and minimizing patient and staff exposure. CONCLUSIONS: Implementation of a POCT platform was associated with improved compliance to our sepsis protocol, reduced sepsis mortality, high employee engagement, and cost savings.

18.
J Early Child Res ; 19(1): 40-54, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34012334

RESUMO

The Abecedarian Approach is an internationally recognised early childhood intervention program that has shown long-term positive outcomes for children living in low SES communities. However, there are few studies examining the broader influence of such interventions for young children on the lives of their parents. This article describes the findings of a qualitative study exploring the perceptions and experiences of parents whose children attend an Abecedarian early intervention program located in an urban social housing complex. Eighteen parents whose children had attended the program for a minimum of one year were interviewed. The main themes that emerged were: strengthened relationships between parents and program staff, as well as between parents themselves, particularly supported through the home visitor; increased awareness among parents about early development and of their role in supporting child development; and opportunities for parents' personal growth. The findings suggest that high quality early child intervention programs, such as the Abecedarian Approach, can positively impact the lives of parents.

19.
J Mol Diagn ; 23(6): 671-682, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872788

RESUMO

When sequencing small RNA libraries derived from whole blood, the most abundant microRNAs (miRs) detected are often miR-486-5p, miR-451a, and miR-92a-3p. These highly expressed erythropoietic miRs are released into the sample from red blood cell hemolysis. Next-generation sequencing of these unwanted miRs leads to a waste in sequencing cost and diminished detection of lowly expressed miRNAs, including many potential miRNA biomarkers. Previous work has developed a method to reduce targeted miRNAs using oligonucleotides that bind their target miRNA and prevent its ligation during library construction, although the extent to which oligonucleotides can be multiplexed and their effect on larger cohorts has not been thoroughly explored. We present a method for suppressing detection of three highly abundant heme miRs in a single multiplexed blocking oligonucleotide reaction. In a small paired-sample pilot (n = 8) and a large cohort of samples (n = 901), multiplexed oligos reduced detection of their target miRNAs by approximately 70%, allowing for an approximately 10-fold increase in reads mapping to nonheme miRs and increased detection of very lowly expressed miRs, with minimal off-target effects. By removing all three highly expressed erythropoietic miRNAs from next-generational sequencing libraries, this commercially available multiplexed blocking oligonucleotide method allows for greater detection of lowly expressed biomarkers, improving the efficacy, cost-efficiency, and sensitivity of biomarker studies and diagnostic tests.


Assuntos
Hemólise/genética , MicroRNAs/genética , Oligonucleotídeos/farmacologia , RNA/sangue , Adulto , Estudos de Coortes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...