Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Alzheimers Res Ther ; 16(1): 102, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725033

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. METHODS: Eighty-one adults (mean age:61.7 ± 6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. RESULTS: Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60 + years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning, and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. CONCLUSION: Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.


Assuntos
Doença de Alzheimer , Polissonografia , Apneia Obstrutiva do Sono , Sono REM , Humanos , Feminino , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/complicações , Pessoa de Meia-Idade , Sono REM/fisiologia , Idoso , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/genética , Fatores de Risco , Aprendizagem Verbal/fisiologia , Apolipoproteína E4/genética , Memória/fisiologia , Índice de Gravidade de Doença , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/fisiopatologia , Síndromes da Apneia do Sono/genética
2.
J Neurophysiol ; 132(1): 23-33, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748407

RESUMO

The apolipoprotein E (APOE) gene has been studied due to its influence on Alzheimer's disease (AD) development and work in an APOE mouse model recently demonstrated impaired respiratory motor plasticity following spinal cord injury (SCI). Individuals with AD often copresent with obstructive sleep apnea (OSA) characterized by cessations in breathing during sleep. Despite the prominence of APOE genotype and sex as factors in AD progression, little is known about the impact of these variables on respiratory control. Ventilation is tightly regulated across many systems, with respiratory rhythm formation occurring in the brainstem but modulated in response to chemoreception. Alterations within these modulatory systems may result in disruptions of appropriate respiratory control and ultimately, disease. Using mice expressing two different humanized APOE alleles, we characterized how sex and the presence of APOE3 or APOE4 influences ventilation during baseline breathing (normoxia) and during respiratory challenges. We show that sex and APOE genotype influence breathing during hypoxic challenge, which may have clinical implications in the context of AD and OSA. In addition, female mice, while responding robustly to hypoxia, were unable to recover to baseline respiratory levels, emphasizing sex differences in disordered breathing.NEW & NOTEWORTHY This study is the first to use whole body plethysmography (WBP) to measure the impact of APOE alleles on breathing under normoxia and during adverse respiratory challenges in a targeted replacement Alzheimer's model. Both sex and genotype were shown to affect breathing under normoxia, hypoxic challenge, and hypoxic-hypercapnic challenge. This work has important implications regarding the impact of genetics on respiratory control as well as applications pertaining to conditions of disordered breathing including sleep apnea and neurotrauma.


Assuntos
Hipóxia , Animais , Feminino , Masculino , Hipóxia/fisiopatologia , Camundongos , Apolipoproteína E4/genética , Genótipo , Hipercapnia/fisiopatologia , Camundongos Transgênicos , Caracteres Sexuais , Respiração , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Fatores Sexuais , Camundongos Endogâmicos C57BL
3.
J Clin Invest ; 134(9)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470479

RESUMO

CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.


Assuntos
Encéfalo , Linfócitos T CD4-Positivos , Macaca mulatta , Receptores CCR7 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores CCR7/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Vigilância Imunológica
4.
Elife ; 122024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385642

RESUMO

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.


Assuntos
Vacinas contra a AIDS , HIV-1 , Animais , Macaca mulatta , Quimiocina CXCL10 , Anticorpos Anti-HIV , DNA
5.
PLoS Pathog ; 19(12): e1011844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060615

RESUMO

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS)-known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Acute infection led to marked imbalance in the CNS CD4/CD8 ratio which persisted into the chronic phase. These observations underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our findings offer insights for potential T cell-focused interventions while underscoring the challenges in eradicating HIV from the CNS, particularly in the context of sub-optimal ART.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Linfócitos T CD4-Positivos , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Sistema Nervoso Central , Carga Viral
6.
Cancers (Basel) ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136253

RESUMO

Cancer remains a prominent global cause of mortality, second only to cardiovascular disease. The past decades have witnessed substantial advancements in anti-cancer therapies, resulting in improved outcomes. Among these advancements, immunotherapy has emerged as a promising breakthrough, leveraging the immune system to target and eliminate cancer cells. Despite the remarkable potential of immunotherapy, concerns have arisen regarding associations with adverse cardiovascular events. This review examines the complex interplay between immunotherapy and cardiovascular toxicity and provides an overview of immunotherapy mechanisms, clinical perspectives, and potential biomarkers for adverse events, while delving into the intricate immune responses and evasion mechanisms displayed by cancer cells. The focus extends to the role of immune checkpoint inhibitors in cancer therapy, including CTLA-4, PD-1, and PD-L1 targeting antibodies. This review underscores the multifaceted challenges of managing immunotherapy-related cardiovascular toxicity. Risk factors for immune-related adverse events and major adverse cardiac events are explored, encompassing pharmacological, treatment-related, autoimmune, cardiovascular, tumor-related, social, genetic, and immune-related factors. The review also advocates for enhanced medical education and risk assessment tools to identify high-risk patients for preventive measures. Baseline cardiovascular evaluations, potential prophylactic strategies, and monitoring of emerging toxicity symptoms are discussed, along with the potential of adjunct anti-inflammatory therapies.

7.
ACS Macro Lett ; 12(12): 1623-1628, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37962989

RESUMO

Accessing the chemistry of reactive intermediates under mild conditions has significantly expanded the available chemical space for molecular transformations. Nowhere is this more apparent than in the context of photoredox catalysis. Despite abundant literature precedents for using this powerful methodology to build complex targets, there are comparatively few reports that leverage photoredox catalysis for macromolecular editing. Here, we report a mild photoredox approach that enables both the functionalization and degradation of polyalkenamers to valuable feedstocks. Irradiation with visible light (including natural sunlight) in the presence of a pyrillium photoredox catalyst promoted facile chain scission in a variety of substrates. This metal-free approach transformed high molar mass materials (>300 kDa) to low molar mass species (<15 kDa) within 10 min. Moreover, we could completely degrade macromolecules into a range of useful targets (C16-C29 species) within 96 h. Mechanistic and kinetic experiments were carried out to understand this reactivity, which could be coupled with hydrofunctionalizations to create tailored products.

8.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693567

RESUMO

CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. In Brief: Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights: CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.

9.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37503150

RESUMO

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA)+QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA+QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p <0.05). Notably, interferon γ+ Env-specific Tfh responses were consistently higher with gp140 in MPLA+QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.

10.
J Phys Chem Lett ; 14(31): 7020-7026, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523856

RESUMO

Electrostatic interactions involving proteins depend on not only the ionic charges involved but also their chemical identities. Here we examine the origins of incompletely understood differences in the strength of association of different pairs of monovalent molecular ions that are relevant to protein-protein and protein-ligand interactions. Cationic analogues of the basic amino acid side chains are simulated, along with oxyanionic analogues of cation-exchange ligands and acidic amino acids. Experimentally observed association trends with respect to the cations, but not anions, are captured by a nonpolarizable model. An effective continuum correction to account for electronic polarizability can capture both trends better but at the expense of fidelity to the underlying free energy landscape for ion-pair association. A polarizable model proves decisive in capturing experimentally suggested trends with respect to both cations and anions; critically, the free energy landscape for ion-pair association is itself altered, thus altering configurational sampling.

12.
J Chromatogr A ; 1702: 464081, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37244165

RESUMO

Recent work has shown that aggregates in monoclonal antibody (mAb) solutions may be made up not just of mAb oligomers but can also harbor hundreds of host-cell proteins (HCPs), suggesting that aggregate persistence through downstream purification operations may be related to HCP clearance. We have examined this in a primary analysis of aggregate persistence through processing steps that are typically implemented for HCP reduction, demonstrating that the phenomenon is relevant to depth filtration, protein A chromatography and flow-through anion-exchange (AEX) polishing. Confocal laser scanning microscopy observations show that aggregates compete with the mAb to adsorb specifically in protein A chromatography and that this competitive interaction is integral to the efficacy of protein A washes. Column chromatography reveals that the protein A elution tail can have a relatively high concentration of aggregates, which corroborates analogous observations from recent HCP studies. Similar measurements in flow-through AEX chromatography show that relatively large aggregates that harbor HCPs and that persist into the protein A eluate can be retained to an extent that appears to depend primarily on the resin surface chemistry. The total aggregate mass fraction of both protein A eluate pools (∼ 2.4 - 3.6%) and AEX flow-through fractions (∼ 1.5 - 3.2%) correlates generally with HCP concentrations measured using enzyme-linked immunosorbent assay (ELISA) as well as the number of HCPs that may be identified in proteomic analysis. This suggests that quantification of the aggregate mass fraction may serve as a convenient albeit imperfect surrogate for informing early process development decisions regarding HCP clearance strategies.


Assuntos
Cromatografia , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química , Ânions
13.
Biotechnol Prog ; 39(4): e3343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020359

RESUMO

Host-cell proteins (HCPs) and high molecular weight (HMW) species have historically been treated as independent classes of impurities in the downstream processing of monoclonal antibodies (mAbs), but recent indications suggest that they may be partially linked. We have explored this connection with a shotgun proteomic analysis of HMW impurities that were isolated from harvest cell culture fluid (HCCF) and protein A eluate using size-exclusion chromatography (SEC). As part of the proteomic analysis, a cross-digest study was performed in which samples were analyzed using both the standard and native digest techniques to enable a fair comparison between bioprocess pools. This comparison reveals that the HCP profiles of HCCF and protein A eluate overlap substantially more than previous work has suggested, because hundreds of HCPs are conserved in aggregates that may be up to ~50 nm in hydrodynamic radius and that persist through the protein A capture step. Quantitative SWATH proteomics suggests that the majority of the protein A eluate's HCP mass is found in such aggregates, and this is corroborated by ELISA measurements on SEC fractions. The SWATH data also show that intra-aggregate concentrations of individual HCPs are positively correlated between aggregates that were isolated from HCCF and protein A eluate, and species that have generally been considered difficult to remove tend to be more concentrated than their counterparts. These observations support prior hypotheses regarding aggregate-mediated HCP persistence through protein A chromatography and highlight the importance of this persistence mechanism.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Anticorpos Monoclonais/química , Cricetulus , Proteômica/métodos , Células CHO , Cromatografia Líquida/métodos , Proteína Estafilocócica A/química
14.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187534

RESUMO

Spinal cord injury (SCI) is a devastating condition characterized by impaired motor and sensory function, as well as internal organ pathology and dysfunction. This internal organ dysfunction, particularly gastrointestinal (GI) complications, and neurogenic bowel, can reduce the quality of life of individuals with an SCI and potentially hinder their recovery. The gut microbiome impacts various central nervous system functions and has been linked to a number of health and disease states. An imbalance of the gut microbiome, i.e., gut dysbiosis, contributes to neurological disease and may influence recovery and repair processes after SCI. Here we examine the impact of high cervical SCI on the gut microbiome and find that transient gut dysbiosis with persistent gut pathology develops after SCI. Importantly, probiotic treatment improves gut health and respiratory motor function measured through whole-body plethysmography. Concurrent with these improvements was a systemic decrease in the cytokine tumor necrosis factor-alpha and an increase in neurite sprouting and regenerative potential of neurons. Collectively, these data reveal the gut microbiome as an important therapeutic target to improve visceral organ health and respiratory motor recovery after SCI. Research Highlights: Cervical spinal cord injury (SCI) causes transient gut dysbiosis and persistent gastrointestinal (GI) pathology.Treatment with probiotics after SCI leads to a healthier GI tract and improved respiratory motor recovery.Probiotic treatment decreases systemic tumor necrosis factor-alpha and increases the potential for sprouting and regeneration of neurons after SCI.The gut microbiome is a valid target to improve motor function and secondary visceral health after SCI.

15.
Nature ; 612(7939): 228-231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477127

RESUMO

Gamma-ray bursts (GRBs) are flashes of high-energy radiation arising from energetic cosmic explosions. Bursts of long (greater than two seconds) duration are produced by the core-collapse of massive stars1, and those of short (less than two seconds) duration by the merger of compact objects, such as two neutron stars2. A third class of events with hybrid high-energy properties was identified3, but never conclusively linked to a stellar progenitor. The lack of bright supernovae rules out typical core-collapse explosions4-6, but their distance scales prevent sensitive searches for direct signatures of a progenitor system. Only tentative evidence for a kilonova has been presented7,8. Here we report observations of the exceptionally bright GRB 211211A, which classify it as a hybrid event and constrain its distance scale to only 346 megaparsecs. Our measurements indicate that its lower-energy (from ultraviolet to near-infrared) counterpart is powered by a luminous (approximately 1042 erg per second) kilonova possibly formed in the ejecta of a compact object merger.


Assuntos
Astros Celestes
16.
J Neuroinflammation ; 19(1): 250, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203187

RESUMO

BACKGROUND: Immunosurveillance of the central nervous system (CNS) is vital to resolve infection and injury. However, immune activation within the CNS in the setting of chronic viral infections, such as HIV-1, is strongly linked to progressive neurodegeneration and cognitive decline. Establishment of HIV-1 in the CNS early following infection underscores the need to delineate features of acute CNS immune activation, as these early inflammatory events may mediate neurodegenerative processes. Here, we focused on elucidating molecular programs of neuroinflammation in brain regions based on vulnerability to neuroAIDS and/or neurocognitive decline. To this end, we assessed transcriptional profiles within the subcortical white matter of the pre-frontal cortex (PFCw), as well as synapse dense regions from hippocampus, superior temporal cortex, and caudate nucleus, in rhesus macaques following infection with Simian/Human Immunodeficiency Virus (SHIV.C.CH505). METHODS: We performed RNA extraction and sequenced RNA isolated from 3 mm brain punches. Viral RNA was quantified in the brain and cerebrospinal fluid by RT-qPCR assays targeting SIV Gag. Neuroinflammation was assessed by flow cytometry and multiplex ELISA assays. RESULTS: RNA sequencing and flow cytometry data demonstrated immune surveillance of the rhesus CNS by innate and adaptive immune cells during homeostasis. Following SHIV infection, viral entry and integration within multiple brain regions demonstrated vulnerabilities of key cognitive and motor function brain regions to HIV-1 during the acute phase of infection. SHIV-induced transcriptional alterations were concentrated to the PFCw and STS with upregulation of gene expression pathways controlling innate and T-cell inflammatory responses. Within the PFCw, gene modules regulating microglial activation and T cell differentiation were induced at 28 days post-SHIV infection, with evidence for stimulation of immune effector programs characteristic of neuroinflammation. Furthermore, enrichment of pathways regulating mitochondrial respiratory capacity, synapse assembly, and oxidative and endoplasmic reticulum stress were observed. These acute neuroinflammatory features were substantiated by increased influx of activated T cells into the CNS. CONCLUSIONS: Our data show pervasive immune surveillance of the rhesus CNS at homeostasis and reveal perturbations of important immune, neuronal, and synaptic pathways within key anatomic regions controlling cognition and motor function during acute HIV infection. These findings provide a valuable framework to understand early molecular features of HIV associated neurodegeneration.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Substância Branca , Animais , Lobo Frontal , HIV-1/genética , Humanos , Macaca mulatta/genética , RNA Viral , Carga Viral
17.
Med Phys ; 49(9): 6221-6236, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831779

RESUMO

BACKGROUND: Proton relative biological effectiveness (RBE) is known to depend on physical factors of the proton beam, such as its linear energy transfer (LET), as well as on cell-line specific biological factors, such as their ability to repair DNA damage. However, in a clinical setting, proton RBE is still considered to have a fixed value of 1.1 despite the existence of several empirical models that can predict proton RBE based on how a cell's survival curve (linear-quadratic model [LQM]) parameters α and ß vary with the LET of the proton beam. Part of the hesitation to incorporate variable RBE models in the clinic is due to the great noise in the biological datasets on which these models are trained, often making it unclear which model, if any, provides sufficiently accurate RBE predictions to warrant a departure from RBE = 1.1. PURPOSE: Here, we introduce a novel model of proton RBE based on how a cell's intrinsic radiosensitivity varies with LET, rather than its LQM parameters. METHODS AND MATERIALS: We performed clonogenic cell survival assays for eight cell lines exposed to 6 MV x-rays and 1.2, 2.6, or 9.9 keV/µm protons, and combined our measurements with published survival data (n = 397 total cell line/LET combinations). We characterized how radiosensitivity metrics of the form DSF% , (the dose required to achieve survival fraction [SF], e.g., D10% ) varied with proton LET, and calculated the Bayesian information criteria associated with different LET-dependent functions to determine which functions best described the underlying trends. This allowed us to construct a six-parameter model that predicts cells' proton survival curves based on the LET dependence of their radiosensitivity, rather than the LET dependence of the LQM parameters themselves. We compared the accuracy of our model to previously established empirical proton RBE models, and implemented our model within a clinical treatment plan evaluation workflow to demonstrate its feasibility in a clinical setting. RESULTS: Our analyses of the trends in the data show that DSF% is linearly correlated between x-rays and protons, regardless of the choice of the survival level (e.g., D10% , D37% , or D50% are similarly correlated), and that the slope and intercept of these correlations vary with proton LET. The model we constructed based on these trends predicts proton RBE within 15%-30% at the 68.3% confidence level and offers a more accurate general description of the experimental data than previously published empirical models. In the context of a clinical treatment plan, our model generally predicted higher RBE-weighted doses than the other empirical models, with RBE-weighted doses in the distal portion of the field being up to 50.7% higher than the planned RBE-weighted doses (RBE = 1.1) to the tumor. CONCLUSIONS: We established a new empirical proton RBE model that is more accurate than previous empirical models, and that predicts much higher RBE values in the distal edge of clinical proton beams.


Assuntos
Terapia com Prótons , Prótons , Teorema de Bayes , Terapia com Prótons/métodos , Tolerância a Radiação , Eficiência Biológica Relativa , Raios X
18.
Mob DNA ; 13(1): 13, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443687

RESUMO

BACKGROUND: The internal promoter in L1 5'UTR is critical for autonomous L1 transcription and initiating retrotransposition. Unlike the human genome, which features one contemporarily active subfamily, four subfamilies (A_I, Gf_I and Tf_I/II) have been amplifying in the mouse genome in the last one million years. Moreover, mouse L1 5'UTRs are organized into tandem repeats called monomers, which are separated from ORF1 by a tether domain. In this study, we aim to compare promoter activities across young mouse L1 subfamilies and investigate the contribution of individual monomers and the tether sequence. RESULTS: We observed an inverse relationship between subfamily age and the average number of monomers among evolutionarily young mouse L1 subfamilies. The youngest subgroup (A_I and Tf_I/II) on average carry 3-4 monomers in the 5'UTR. Using a single-vector dual-luciferase reporter assay, we compared promoter activities across six L1 subfamilies (A_I/II, Gf_I and Tf_I/II/III) and established their antisense promoter activities in a mouse embryonic fibroblast cell line and a mouse embryonal carcinoma cell line. Using consensus promoter sequences for three subfamilies (A_I, Gf_I and Tf_I), we dissected the differential roles of individual monomers and the tether domain in L1 promoter activity. We validated that, across multiple subfamilies, the second monomer consistently enhances the overall promoter activity. For individual promoter components, monomer 2 is consistently more active than the corresponding monomer 1 and/or the tether for each subfamily. Importantly, we revealed intricate interactions between monomer 2, monomer 1 and tether domains in a subfamily-specific manner. Furthermore, using three-monomer 5'UTRs, we established a complex nonlinear relationship between the length of the outmost monomer and the overall promoter activity. CONCLUSIONS: The laboratory mouse is an important mammalian model system for human diseases as well as L1 biology. Our study extends previous findings and represents an important step toward a better understanding of the molecular mechanism controlling mouse L1 transcription as well as L1's impact on development and disease.

19.
J Chromatogr A ; 1664: 462788, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998025

RESUMO

Flow-through ion-exchange chromatography is frequently used in polishing biotherapeutics, but the factors that contribute to impurity persistence are incompletely understood. A large number of dilute impurities may be encountered that exhibit physicochemical diversity, making the flow-through separation performance highly sensitive to process conditions. The analysis presented in this work develops two novel correlations that offer transferable insights into the chromatographic behavior of weakly adsorbing impurities. The first, based on column simulations and validated experimentally, delineates the relative contributions of thermodynamic, transport, and geometric properties in dictating the initial breakthrough volumes of dilute species. The Graetz number for mass transfer was found to generalize the transport contributions, enabling estimation of a threshold in the equilibrium constant below which impurity persistence is expected. Impurity adsorption equilibria are needed to use this correlation, but such data are not typically available. The second relationship presented in this work may be used to reduce the experimental burden of estimating adsorption equilibria as a function of ionic strength. A correlation between stoichiometric displacement model parameters was found by consolidating isocratic retention data for over 200 protein-pH-resin combinations from the extant literature. Coupled with Yamamoto's analysis of linear gradient elution data, this correlation may be used to estimate retentivity approximately from a single experimental measurement, which could prove useful in predicting host-cell protein chromatographic behavior.


Assuntos
Proteínas , Adsorção , Cromatografia por Troca Iônica , Concentração Osmolar , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...