Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent J (Basel) ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668010

RESUMO

Small-sized stainless steel hand files are conventionally employed in root canal treatment procedures for canal scouting and for glide path establishment, owing to their superior flexibility and proficiency in navigating confined spaces. Given the diversity of brands available in the market, there exists potential variability in their physical characteristics, thereby influencing clinical performance. Consequently, this study aims to conduct a comparative analysis of the design, metallurgy, and mechanical characteristics among seven stainless steel hand file brands across ISO sizes 06, 08, and 10. A total of 315 new 25 mm length stainless steel hand files with apical sizes of 0.06, 0.08, and 0.10 from seven distinct brands were included in the study. A meticulous inspection of all instruments was undertaken to identify any structural deformations that might render them ineligible for the study. The design inspection involved the random selection of instruments from each group, which were examined under various microscopes, including a dental operating microscope, optical microscope, and scanning electron microscope. Furthermore, two instruments from each group underwent energy-dispersive X-ray spectroscopy analysis for elemental composition documentation. Mechanical tests were conducted to evaluate the instruments' resistance to lateral deformation (buckling) and their microhardness. Statistical analysis was executed using the nonparametric Mood's median test, with a predetermined significance level of 0.05. Regarding the instruments design, all files exhibited an active blade length ranging from 16 to 17 mm. However, variations were observed in the number of spirals, tip designs, and sizes, with the API K-File notably larger in sizes 0.06 and 0.08 compared to the other instruments. Despite uniform elements composition, differences in geometric features and mechanical properties were evident. Concerning buckling strength, the API K-File demonstrated superior performance across all tested sizes, while the Dentsply ReadySteel, SybronEndo, and Mani K-Files exhibited lower results (p < 0.05). In microhardness assessments, both the API and Oro K-Files displayed the lowest outcomes, with medians of 531 HVN and 532 HVN, respectively, whereas the SybronEndo K-File exhibited the highest microhardness (657 HVN). Despite similar metallurgical composition, the observed distinctions in geometric features and mechanical properties underscore the impact of the manufacturing process on the characteristics of glide path stainless steel endodontic files. These disparities may ultimately influence their clinical performance.

2.
Dent J (Basel) ; 12(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392233

RESUMO

To establish a glide path, smaller files (up to size 0.15) with tapers of 2% are commonly used as pathfinding files. They pre-shape the root canal space before transitioning to larger taper endodontic instruments, aiming to prevent procedural errors. This study aimed to compare the design, metal wire composition, and mechanical characteristics of seven different ISO size 15 stainless-steel hand files (K-File and C-File+). Ninety-one new stainless-steel ISO 15 K-files were mechanically tested. All files were inspected for deformations before the assessment. Dental operating microscope, scanning electron microscope (SEM), and optical microscope analyses were conducted on four randomly selected instruments from each group, and two instruments per group underwent an energy-dispersive X-ray spectroscopy (EDS) analysis. Buckling mechanical tests were performed using an Instron universal testing machine, and microhardness was assessed using a Vickers hardness tester. The statistical analysis employed the nonparametric Mood's median test, with a significance level set at 0.05. The instrument design analysis unveiled variations in the active blade area length and the number of spirals, while maintaining consistent cross-sections and symmetrical blades. Distinct tip geometries and surface irregularities were observed. While the energy-dispersive X-ray spectroscopy confirmed similar compositions, the buckling strength and microhardness values exhibited variability across for all tested files. Notably, the Dentsply ReadySteel C-File+ recorded the highest buckling value (2.10 N), and the Dentsply ReadySteel K-File exhibited the lowest (1.00 N) (p < 0.05). Moreover, the Dentsply ReadySteel K-File recorded the highest microhardness value (703 HVN), while the SybronEndo Triple-Flex had the lowest (549 HVN) (p < 0.05). While similarities in cross-section design and metal wire composition were noted among the files, variations in the number of spirals and mechanical performance were also observed. Thus, all of these factors should be considered when selecting suitable files for an efficient root canal treatment.

3.
J Adhes Dent ; 25(1): 167-176, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37724938

RESUMO

PURPOSE: To determine the polymerization kinetics and color stability of a self-adhesive and conventional resin composite after accelerated shelf-life simulation. MATERIALS AND METHODS: Two composites were tested - universal Filtek Z250 (3M Oral Care) and self-adhesive Constic (DMG). They were stored for 2 months in an incubator to simulate an Arrhenius aging model (60°C) and tested at 5 different time points. Polymerization kinetics (n = 3) were studied using an attenuated total reflectance technique (ATR), through continuous FTIR spectral acquisition (20 min). Spectra were obtained before, during and after 20 s of light curing. With the spectral data, qualitative analysis was performed yielding chemical stability, and quantitative data including extrapolated degree of conversion (DCmax) and polymerization rate (Rpmax) were assessed. To evaluate color stability (n = 3), a spectrophotometer was used to record CIELAB color parameters. Inferential statistics, including repeated measures two-way ANOVA were carried out at a significance level of 5%. RESULTS: The composites did not appear to undergo significant chemical changes after 2 months of accelerated aging. There was a significant impact of aging on the mean DCmax (p < 0.001). Similarly, a reduction in Rpmax, measured for both composites, was also noted (ANOVA; Z = 203.7; p < 0.001). The two-way ANOVA confirmed that the composite had no influence on the color stability (F = 0.94; p = 0.34), while aging did (p = 0.013). CONCLUSION: Minimal changes in absorbance levels were noted for both composites, without overly affecting their chemical composition. The presence of an acidic monomer did not seem to potentiate the degradation of the self-adhesive composite. This composite even showed greater color stability after aging.


Assuntos
Projetos de Pesquisa , Cimentos de Resina , Polimerização , Cinética
4.
Oral Health Dent Manag ; 13(2): 155-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24984615

RESUMO

AIMS: To evaluate the influence of mechanical surface treatment and chemical primer application on the composite shear bond strength to zirconia. METHODS: Eighty blocks of Lava Frame Zirconia were randomly assigned to the experimental groups, according to the several possible combinations between mechanical (untreated/aluminum oxide sandblast) and chemical treatment (no primer/Monobond Plus/Experimental Zirkon-Primer/Z-Prime Plus) (n=10). Adhesive system and composite resin were then applied, and samples were thermal cycled (5°C-55°C, 500 cycles). Shear bond strength tests and failure mode analysis were performed. SBS data were analyzed by two-way ANOVA, followed by Student-Newman-Keuls post-hoc tests, and failure mode by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: Shear bond strength mean values ranged from 6.9 to 23.2 MPa. Surface treatment with aluminum oxide sandblasting allowed a statistically significant increase (p<0.05) in bond strength values. The group treated with Z-Prime Plus achieved (p<0.05) higher bond strength results than the other chemical treatments. CONCLUSIONS: The surface mechanical treatment almost doubled the bond strength values. Z-Primer Plus have enhanced bond strength values of composite to zirconia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...