Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024603, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491596

RESUMO

We study the effects of inertia in dense suspensions of polar swimmers. The hydrodynamic velocity field and the polar order parameter field describe the dynamics of the suspension. We show that a dimensionless parameter R (ratio of the swimmer self-advection speed to the active stress invasion speed [Phys. Rev. X 11, 031063 (2021)2160-330810.1103/PhysRevX.11.031063]) controls the stability of an ordered swimmer suspension. For R smaller than a threshold R_{1}, perturbations grow at a rate proportional to their wave number q. Beyond R_{1} we show that the growth rate is O(q^{2}) until a second threshold R=R_{2} is reached. The suspension is stable for R>R_{2}. We perform direct numerical simulations to characterize the steady-state properties and observe defect turbulence for R

2.
Soft Matter ; 17(30): 7177-7187, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34268552

RESUMO

Interpenetrating and random copolymer networks are vital in a number of industrial applications, including the fabrication of automotive parts, damping materials, and tissue engineering scaffolds. We develop a theoretical model for a process that enables the controlled growth of interpenetrating network (IPNs), or a random copolymer network (RCN) of specified size and mechanical properties. In this process, a primary gel "seed" is immersed into a solution containing the secondary monomer and crosslinkers. After the latter species are absorbed into the primary network, the absorbed monomers are polymerized to form the secondary polymer chains, which then can undergo further crosslinking to form an IPN, or undergo inter-chain exchange with the existing network to form a RCN. The swelling and elastic properties of the IPN and RCN networks can be tailored by modifying the monomer and crosslinker concentrations in the surrounding solution, or by tuning the enthalpic interactions between the primary polymer, secondary monomer and solvent through a proper choice of chemistry. This process can be used repeatedly to fabricate gels with a range of mechanical properties from stiff, rigid materials to soft, flexible networks, allowing the method to meet the materials requirements of a variety of applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Polimerização , Polímeros , Alicerces Teciduais
3.
Phys Rev E ; 94(2-1): 022406, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627334

RESUMO

We study the spreading of a bacterial colony undergoing turbulentlike collective motion. We present two minimalistic models to investigate the interplay between population growth and coherent structures arising from turbulence. Using direct numerical simulation of the proposed models we find that turbulence has two prominent effects on the spatial growth of the colony: (a) the front speed is enhanced, and (b) the front gets crumpled. Both these effects, which we highlight by using statistical tools, are markedly different in our two models. We also show that the crumpled front structure and the passive scalar fronts in random flows are related in certain regimes.


Assuntos
Modelos Biológicos , Movimento (Física) , Bactérias , Fenômenos Fisiológicos Bacterianos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...