Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6645): 599-603, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167388

RESUMO

Fast radio bursts (FRBs) are brief, intense flashes of radio waves from unidentified extragalactic sources. Polarized FRBs originate in highly magnetized environments. We report observations of the repeating FRB 20190520B spanning 17 months, which show that the FRB's Faraday rotation is highly variable and twice changes sign. The FRB also depolarizes below radio frequencies of about 1 to 3 gigahertz. We interpret these properties as being due to changes in the parallel component of the magnetic field integrated along the line of sight, including reversing direction of the field. This could result from propagation through a turbulent magnetized screen of plasma, located 10-5 to [Formula: see text] parsecs from the FRB source. This is consistent with the bursts passing through the stellar wind of a binary companion of the FRB source.

2.
Nature ; 607(7918): 256-259, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831603

RESUMO

Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light years1. The nature of their progenitors and their emission mechanism remain open astrophysical questions2. Here we report the detection of the multicomponent FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components, with a significance of 6.5σ. The long (roughly 3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere3,4, as opposed to emission regions located further away from the star, as predicted by some models5.

3.
Nat Astron ; 5: 761-765, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35005245

RESUMO

In 2012, Voyager 1 became the first in situ probe of the very local interstellar medium1. The Voyager 1 Plasma Wave System has given point estimates of the plasma density spanning about 30 au of interstellar space, revealing a large-scale density gradient2,3 and turbulence4 outside the heliopause. Previous studies of the plasma density relied on the detection of discrete plasma oscillation events triggered ahead of shocks propagating outwards from the Sun and used to infer the plasma frequency and hence density5,6. We present the detection of a class of very weak, narrowband plasma wave emission in the Voyager 1 data that persists from 2017 onwards and enables the first steadily sampled measurement of the interstellar plasma density over about 10 au with an average sampling distance of 0.03 au. We find au-scale density fluctuations that trace interstellar turbulence between episodes of previously detected plasma oscillations. Possible mechanisms for the narrowband emission include thermally excited plasma oscillations and quasi-thermal noise, and could be clarified by new findings from Voyager or a future interstellar mission. The emission's persistence suggests that Voyager 1 may be able to continue tracking the interstellar plasma density in the absence of shock-generated plasma oscillation events.

4.
Phys Rev Lett ; 127(25): 251302, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029450

RESUMO

We search for a first-order phase transition gravitational wave signal in 45 pulsars from the NANOGrav 12.5-year dataset. We find that the data can be modeled in terms of a strong first order phase transition taking place at temperatures below the electroweak scale. However, we do not observe any strong preference for a phase-transition interpretation of the signal over the standard astrophysical interpretation in terms of supermassive black hole mergers; but we expect to gain additional discriminating power with future datasets, improving the signal to noise ratio and extending the sensitivity window to lower frequencies. An interesting open question is how well gravitational wave observatories could separate such signals.

5.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064506

RESUMO

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

6.
Science ; 320(5881): 1309-12, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18483399

RESUMO

Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...