Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37892065

RESUMO

Kidney tumors represent a significant medical challenge, characterized by their often-asymptomatic nature and the need for early detection to facilitate timely and effective intervention. Although neural networks have shown great promise in disease prediction, their computational demands have limited their practicality in clinical settings. This study introduces a novel methodology, the UNet-PWP architecture, tailored explicitly for kidney tumor segmentation, designed to optimize resource utilization and overcome computational complexity constraints. A key novelty in our approach is the application of adaptive partitioning, which deconstructs the intricate UNet architecture into smaller submodels. This partitioning strategy reduces computational requirements and enhances the model's efficiency in processing kidney tumor images. Additionally, we augment the UNet's depth by incorporating pre-trained weights, therefore significantly boosting its capacity to handle intricate and detailed segmentation tasks. Furthermore, we employ weight-pruning techniques to eliminate redundant zero-weighted parameters, further streamlining the UNet-PWP model without compromising its performance. To rigorously assess the effectiveness of our proposed UNet-PWP model, we conducted a comparative evaluation alongside the DeepLab V3+ model, both trained on the "KiTs 19, 21, and 23" kidney tumor dataset. Our results are optimistic, with the UNet-PWP model achieving an exceptional accuracy rate of 97.01% on both the training and test datasets, surpassing the DeepLab V3+ model in performance. Furthermore, to ensure our model's results are easily understandable and explainable. We included a fusion of the attention and Grad-CAM XAI methods. This approach provides valuable insights into the decision-making process of our model and the regions of interest that affect its predictions. In the medical field, this interpretability aspect is crucial for healthcare professionals to trust and comprehend the model's reasoning.

2.
Diagnostics (Basel) ; 13(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370876

RESUMO

Chronic Kidney Disease (CKD) represents a considerable global health challenge, emphasizing the need for precise and prompt prediction of disease progression to enable early intervention and enhance patient outcomes. As per this study, we introduce an innovative fusion deep learning model that combines a Graph Neural Network (GNN) and a tabular data model for predicting CKD progression by capitalizing on the strengths of both graph-structured and tabular data representations. The GNN model processes graph-structured data, uncovering intricate relationships between patients and their medical conditions, while the tabular data model adeptly manages patient-specific features within a conventional data format. An extensive comparison of the fusion model, GNN model, tabular data model, and a baseline model was conducted utilizing various evaluation metrics, encompassing accuracy, precision, recall, and F1-score. The fusion model exhibited outstanding performance across all metrics, underlining its augmented capacity for predicting CKD progression. The GNN model's performance closely trailed the fusion model, accentuating the advantages of integrating graph-structured data into the prediction process. Hyperparameter optimization was performed using grid search, ensuring a fair comparison among the models. The fusion model displayed consistent performance across diverse data splits, demonstrating its adaptability to dataset variations and resilience against noise and outliers. In conclusion, the proposed fusion deep learning model, which amalgamates the capabilities of both the GNN model and the tabular data model, substantially surpasses the individual models and the baseline model in predicting CKD progression. This pioneering approach provides a more precise and dependable method for early detection and management of CKD, highlighting its potential to advance the domain of precision medicine and elevate patient care.

3.
J Med Signals Sens ; 12(2): 108-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755976

RESUMO

Background: Accurate semantic segmentation of kidney tumors in computed tomography (CT) images is difficult because tumors feature varied forms and occasionally, look alike. The KiTs19 challenge sets the groundwork for future advances in kidney tumor segmentation. Methods: We present weight pruning (WP)-UNet, a deep network model that is lightweight with a small scale; it involves few parameters with a quick assumption time and a low floating-point computational complexity. Results: We trained and evaluated the model with CT images from 210 patients. The findings implied the dominance of our method on the training Dice score (0.98) for the kidney tumor region. The proposed model only uses 1,297,441 parameters and 7.2e floating-point operations, three times lower than those for other network models. Conclusions: The results confirm that the proposed architecture is smaller than that of UNet, involves less computational complexity, and yields good accuracy, indicating its potential applicability in kidney tumor imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...