Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107439, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838774

RESUMO

The therapeutic application of CRISPR-Cas9 is limited due to its off-target activity. To have a better understanding of this off-target effect, we focused on its mismatch-prone PAM distal end. The off-target activity of SpCas9 depends directly on the nature of mismatches, which in turn results in deviation of the active site of SpCas9 due to structural instability in the RNA-DNA duplex strand. In order to test the hypothesis, we designed an array of mismatched target sites at the PAM distal end and performed in vitro and cell line-based experiments, which showed a strong correlation for Cas9 activity. We found that target sites having multiple mismatches in the 18th to 15th position upstream of the PAM showed no to little activity. For further mechanistic validation, Molecular Dynamics simulations were performed, which revealed that certain mismatches showed elevated root mean square deviation values that can be attributed to conformational instability within the RNA-DNA duplex. Therefore, for successful prediction of the off-target effect of SpCas9, along with complementation-derived energy, the RNA-DNA duplex stability should be taken into account.

2.
Biochimie ; 218: 105-117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37517577

RESUMO

Chandipura Virus is an emerging tropical pathogen with a high mortality rate among children. No mode of treatment or antivirals exists against CHPV infection, due to little information regarding its host interaction. Studying viral pathogen interaction with its host can not only provide valuable information regarding its propagation strategy, but also on which host proteins interact with the virus. Identifying these proteins and understanding their role in the infection process can provide more stable anti-viral targets. In this study, we focused on identifying host factors that interact with CHPV and may play a critical role in CHPV infection. We are the first to report the successful identification of Alpha-2-Macroglobulin (A2M), a secretory protein of the host that interacts with CHPV. We also established that LRP1 (Low-density lipoprotein receptor-related protein 1) and GRP78 (Glucose regulated protein 78), receptors of A2M, also interact with CHPV. Furthermore, we could also demonstrate that knocking out A2M has a severe effect on viral infection. We conclusively show the interaction of these host proteins with CHPV. Our findings also indicate that these host proteins could play a role in viral entry into the host cell.


Assuntos
Fatores de Transcrição , Vesiculovirus , Criança , Humanos , Macroglobulinas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
3.
Fortune J Health Sci ; 5(3): 432-454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37304053

RESUMO

In India, COVID-19 (Corona Virus Disease-2019) continues to this day, although with subdued intensity, following two major waves of viral infection. Despite ongoing vaccination drives to curb the spread of COVID-19, the relative potential of the administered vaccines to render immune protection to the general population and their advantage over natural infection remain undocumented. In this study, we examined the humoral and cell-mediated immune responses induced by the two vaccines Covishield and Covaxin, in individuals living in and around Kolkata, India. We also compared the immune responses induced separately by vaccination and natural infection. Our results indicate that although Covishield generates a better humoral immune response toward SARS-CoV-2, both vaccines are almost equivalent in terms of cell-mediated immune response to the virus. Both Covishield and Covaxin, however, are more effective toward the wild-type virus than the Delta variant. Additionally, the overall immune response resulting from natural infection in and around Kolkata is not only similar to that generated by vaccination but the cell-mediated immune response to SARS-CoV-2 also lasts for at least ten months in some individuals after the viral infection.

4.
Biochem Biophys Res Commun ; 566: 53-58, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34116357

RESUMO

The signal recognition particle (SRP) plays an essential role in protein translocation across biological membranes. Stable complexation of two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of nascent polypeptide to the membrane translocon. In archaea, protein targeting is mediated by the SRP54/SRP19/7S RNA ribonucleoprotein complex (SRP) and the FtsY protein (SR). In the present study, using fluorescence resonance energy transfer (FRET), we demonstrate that archaeal 7S RNA stabilizes the SRP54·FtsY targeting complex (TC). Moreover, we show that archaeal SRP19 further assists 7S RNA in stabilizing the targeting complex (TC). These results suggest that archaeal 7S RNA and SRP19 modulate the conformation of the targeting complex and thereby reinforce TC to execute protein translocation via concomitant GTP hydrolysis.


Assuntos
Proteínas Arqueais/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Sulfolobus acidocaldarius/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Modelos Moleculares
6.
Environ Sci Pollut Res Int ; 28(20): 26187-26196, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33871774

RESUMO

Microbiomes of freshwater basins intended for human use remain poorly studied, with very little known about the microbial response to in situ oil spills. Lake Pertusillo is an artificial freshwater reservoir in Basilicata, Italy, and serves as the primary source of drinking water for more than one and a half million people in the region. Notably, it is located in close proximity to one of the largest oil extraction plants in Europe. The lake suffered a major oil spill in 2017, where approximately 400 tons of crude oil spilled into the lake; importantly, the pollution event provided a rare opportunity to study how the lacustrine microbiome responds to petroleum hydrocarbon contamination. Water samples were collected from Lake Pertusillo 10 months prior to and 3 months after the accident. The presence of hydrocarbons was verified and the taxonomic and functional aspects of the lake microbiome were assessed. The analysis revealed specialized successional patterns of lake microbial communities that were potentially capable of degrading complex, recalcitrant hydrocarbons, including aromatic, chloroaromatic, nitroaromatic, and sulfur containing aromatic hydrocarbons. Our findings indicated that changes in the freshwater microbial community were associated with the oil pollution event, where microbial patterns identified in the lacustrine microbiome 3 months after the oil spill were representative of its hydrocarbonoclastic potential and may serve as effective proxies for lacustrine oil pollution.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Ecossistema , Europa (Continente) , Humanos , Hidrocarbonetos/análise , Itália
7.
Nanomedicine (Lond) ; 16(10): 801-818, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33900109

RESUMO

Aim: An antibiotic-conjugated protein-stabilized nanoparticle hybrid system was developed to combat the challenges faced during the treatment of drug-resistant bacterial biofilm-associated infections. Materials & methods: Biocompatible silver nanoparticles were synthesized using intracellular protein and gentamycin was attached. The resulting nanohybrid was characterized and its antibacterial efficiency was assessed against Gram-positive, Gram-negative and drug-resistant bacteria. Results: Spectroscopic and electron microscopic analysis revealed that the nanoparticles were spherical with a diameter of 2-6 nm. Red-shifting of the surface plasmon peak and an increase in hydrodynamic diameter confirmed attachment of gentamycin. The nanohybrid exhibited antibacterial efficiency against a range of bacteria with the ability to inhibit and disrupt bacterial biofilm. Conclusion: A unique nanohybrid was designed that has potential to be used to control drug-resistant bacterial infections in the future.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Antibacterianos/farmacologia , Biofilmes , Gentamicinas , Humanos , Testes de Sensibilidade Microbiana , Prata
8.
Virus Res ; 295: 198298, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33508356

RESUMO

The negative strand RNA virus family contains many human pathogens. Finding new antiviral drug targets against this class of human pathogens is one of the significant healthcare needs. Nucleocapsid proteins of negative strand RNA viruses wrap the viral genomic RNA and play essential roles in gene transcription and genome replication. Chandipura virus, a member of the Rhabdoviridae family, has a negative strand RNA genome. In addition to wrapping the genomic RNA, its nucleocapsid protein interacts with the positive strand leader RNA and plays a vital role in the virus life-cycle. We have designed a peptide, based on prior knowledge and demonstrated that the peptide is capable of binding specifically to the positive strand leader RNA. When the peptide was transported inside the cell, it inhibited viral growth with IC50 values in the low micromolar range. Given the widespread occurrence of leader RNAs in negative strand RNA viruses and its interaction with the nucleocapsid protein, it is likely that this interaction could be a valid drug target for other negative strand RNA viruses.


Assuntos
Vírus de RNA , Genoma Viral , Humanos , Proteínas do Nucleocapsídeo/genética , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vesiculovirus/genética , Replicação Viral
9.
Int J Pharm ; 580: 119192, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32126250

RESUMO

The efficiency of drug depends not only on its potency but also on its ability to reach the target sites in preference to non-target sites. In this regard, protein assembled nanocarrier is the most promising strategy for intracellular anti-cancer drug delivery. The key motive of this study is to fabricate biocompatible protein assembled nanocarrier conjugated photosensitizer system for stimuli-responsive treatment of lung carcinoma. Here, we have synthesized a unique nanohybrid of protein assembled gold nanoparticles (AuNPs), attaching a model photosensitizer, Protoporphyrin IX (PpIX) to the protein shell of the nanoparticles (NPs) imparting an ideal drug-carrier nature. Photo-induced alteration in hydrodynamic diameter suggests structural perturbation of the nanohybrid which in terms signifies on-demand drug delivery. The drug release profile has been further confirmed by using steady-state fluorescence experiments. AuNP-PpIX showed excellent anti-cancer efficiency upon green light irradiation on lung adenocarcinoma cell line (A549) through intracellular reactive oxygen species (ROS) generation. The cellular morphological changes upon PDT and internalization of nanohybrid were monitored using confocal laser scanning microscope. This anti-cancer effect of nanohybrid was associated with apoptotic pathway which was confirmed in the flow cytometric platform. The developed nanomedicine is expected to find relevance in clinical anti-cancer PDT models in the near future.


Assuntos
Antineoplásicos/síntese química , Neoplasias Pulmonares , Nanopartículas Metálicas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Protoporfirinas/síntese química , Células A549 , Antineoplásicos/administração & dosagem , Ouro/administração & dosagem , Ouro/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Nanopartículas Metálicas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Protoporfirinas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
10.
Life Sci ; 232: 116636, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295471

RESUMO

Till date, only three techniques namely Zinc Finger Nuclease (ZFN), Transcription-Activator Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9) are available for targeted genome editing. CRISPR-Cas system is very efficient, fast, easy and cheap technique for achieving knock-out gene in the cell. CRISPR-Cas9 system refurbishes the targeted genome editing approach into a more expedient and competent way, thus facilitating proficient genome editing through embattled double-strand breaks in approximately any organism and cell type. The off-target effects of CRISPR Cas system has been circumnavigated by using paired nickases. Moreover, CRISPR-Cas9 has been used effectively for numerous purposes, like knock-out of a gene, regulation of endogenous gene expression, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The execution of the CRISPR-Cas9 system has amplified the number of accessible scientific substitutes for studying gene function, thus enabling generation of CRISPR-based disease models. Even though many mechanistic questions are left behind to be answered and the system is not yet fool-proof i.e., a number of challenges are yet to be addressed, the employment of CRISPR-Cas9-based genome engineering technologies will increase our understanding to disease processes and their treatment in the near future. In this review we have discussed the history of CRISPR-Cas9, its mechanism for genome editing and its application in animal, plant and protozoan parasites. Additionally, the pros and cons of CRISPR-Cas9 and its potential in therapeutic application have also been detailed here.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/tendências , Genoma , Humanos , Plantas/genética
11.
Arch Microbiol ; 201(8): 1129-1140, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31168634

RESUMO

Acinetobacter pittii strain ABC was isolated from oily sludge sediments and characterized with regard to utilization/degradation of hydrocarbons and competitive persistence in hydrocarbon-amended media. The isolate grew in both aliphatic- and aromatic hydrocarbon-amended Bushnell-Haas medium (BHM). When incubated in 1% (v/v) Assam crude oil-amended BHM for 5 and 10 days, this strain was able to degrade 88% and 99.8% of the n-hexane extractable crude oil components, respectively. The isolate showed appreciable emulsification index (E24 65.26 ± 1.2%), hydrophobicity (60.88 ± 3.5%) and produced lipopeptide biosurfactant (0.57 g L-1). The isolate was able to tolerate heavy metal salts at concentrations reported in crude oil-polluted sediments from Assam. A 16S rDNA DGGE-based screening showed the persistence of A. pittii strain ABC in hydrocarbon-amended microcosms co-inoculated with other hydrocarbonoclastic bacterial strains (Pseudomonas aeruginosa AKS1, Bacillus sp. AKS2, Arthrobacter sp. BC1, and Novosphingobium panipatense P5:ABC), each isolated from the same oily sludge sediment. These findings indicate A. pittii strain ABC as a potential agent for the bioremediation of crude oil-polluted environment.


Assuntos
Acinetobacter/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Poluição por Petróleo/análise , Petróleo/metabolismo , Acinetobacter/genética , Acinetobacter/isolamento & purificação , DNA Ribossômico/genética , Interações Hidrofóbicas e Hidrofílicas , Esgotos/microbiologia
12.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180044

RESUMO

ErbB-3 binding protein 1 (Ebp1) is a host protein which binds ErbB-3 receptor to induce signalling events for cell growth regulation. In addition, Ebp1 also interacts with ribonucleoprotein complexes. In recent times, Ebp1 was found to play an antagonistic role in viral infections caused by Influenza and Rinderpest viruses. In our present work we have tried to understand the role of Ebp1 in Chandipura virus (CHPV) infection. We have observed an induction in Ebp1 expression upon CHPV infection similar to other viruses. However, unlike other viruses an overexpressed Ebp1 only reduces viral protein expression, but does not affect its progeny formation. Additionally, this effect is being carried out in an indirect manner, as there is no interaction between Ebp1 and viral proteins. This is despite Ebp1's presence in viral inclusion bodies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Interações Hospedeiro-Patógeno/genética , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Vesiculovirus/genética , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação da Expressão Gênica , Humanos , Corpos de Inclusão Viral/química , Neurônios/virologia , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transfecção , Células Vero , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/metabolismo , Ensaio de Placa Viral
13.
Environ Sci Pollut Res Int ; 25(31): 31326-31345, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30194579

RESUMO

Metal pollution is a subject of growing concern as it affects the whole food chain of an ecosystem by bioaccumulation. Growing industrialization and anthropogenic intervention have put tremendous pressure on self-sustaining ecosystems worldwide. Sundarbans mangrove estuary, being a UNESCO World Heritage site, suffers severely from anthropogenic stress, urbanization, ecotourism, overexploitation of natural resources and discharges of industrial as well as municipal waste products. Our study unfolds the extent of metal pollution in the sediment of this estuarine mangrove ecosystem and also investigates the source and distribution of these metals. Extensive samplings were performed during three major seasons, namely pre-monsoon, monsoon, and post-monsoon for two consecutive years at ten sampling stations along the major river networks of the mangrove estuary. Seasonal variations of these metals, physicochemical properties, and soil texture studies were performed to explore the sediment quality of the study area. Positive correlation was observed between the pollutants and siltation. Several environmental indices were investigated to explore the degree of metal pollution which revealed contamination of Cd, Cr, and Pb to cross the permitted safe index in the study area. Pollution load index indicates the spatial as well as seasonal variation of eco toxic metal load along the course of the rivers. Statistical analyses such as principal component analysis and correlation matrix identified different sources for metal contamination. Almost 700 tannery industries are located in the upstream region of the rivers, and several small- and large-scale battery industries seem to be the main possible source for Cd, Cr, and Pb pollution. Analysis of the results indicates the alarming condition of this heritage site. The metal concentrations beyond toxicity thresholds are responsible for gradual deterioration of this estuarine mangrove which may only be protected by developing sustainable management planning.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos/química , Estações do Ano , Solo/química
14.
Environ Sci Pollut Res Int ; 25(3): 2331-2349, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29124636

RESUMO

Microbial synthesis of gold nanoparticles (GNPs) has attracted considerable attention in recent times due to their exceptional capability for the bioremediation of industrial wastes and also for the treatment of wastewater. A bacterial strain Staphylococcus warneri, isolated from the estuarine mangroves of Sundarbans region produced highly stable GNPs by reducing hydrogen auric chloride (HAucl4) salt using intracellular protein extract. The nanoparticles were characterized utilizing ultraviolet-visible spectrophotometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and surface enhanced Raman scattering. Highly dispersed, spherically shaped GNPs varied around 15-25 nm in size and were highly crystalline with face-centered cubic structures. Recyclable catalytic activity of as-synthesized GNPs was evidenced by complete degradation of nitro aromatic pollutants like 2-nitroaniline, 4-nitroaniline, 2-nitrophenol and 4-nitrophenol. Our GNPs show excellent and efficient catalytic activity with significantly high rate constant (10-1 order) and high turnover frequency (103 order) in recyclable manner up to three times. To our knowledge, this is the first report of Staphylococcus warneri in the production of gold nanoparticles. This green technology for bioremediation of toxic nitro aromatic pollutants is safe and economically beneficial to challenge the development and sustainability issue.


Assuntos
Ouro/química , Química Verde/métodos , Hidrocarbonetos Aromáticos/análise , Nanopartículas Metálicas/química , Nitrocompostos/análise , Staphylococcus/metabolismo , Catálise , Recuperação e Remediação Ambiental , Reutilização de Equipamento , Estuários , Staphylococcus/isolamento & purificação
15.
Sci Rep ; 7(1): 9170, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835684

RESUMO

Tumor relapse in triple negative breast cancer patients has been implicated to chemoresistant cancer stem cells (CSCs), which under favorable conditions culminate in tumor re-formation and metastasis. Hence, eradication of CSCs during systemic chemotherapy is imperative. CSCs were sorted using immuno-phenotyping and aldefluor assay. Gene expression profiling of normal breast stem cells and breast CSCs from chemo-treated patients were carried out. Silencing SOX2 was achieved by siRNA method. Mammosphere culture and wound healing assays were carried out to assess efficacy of CSCs. Microarray analysis revealed elevated expression of SOX2, ABCG2 and TWIST1, unraveling an intertwined pluripotency-chemoresistance-EMT axis. Although paclitaxel treatment led to temporary arrest of cell migration, invasiveness resumed after drug removal. The 'twist in the tale' was a consistently elevated expression of TWIST1, substantiating that TWIST1 can also promote stemness and chemoresistance in tumors; hence, its eradication was imperative. Silencing SOX2 increased chemo-sensitivity and diminished sphere formation, and led to TWIST1 down regulation. This study eventually established that SOX2 silencing of CSCs along with paclitaxel treatment reduced SOX2-ABCG2-TWIST1 expression, disrupted sphere forming capacity and also reduced invasiveness by retaining epithelial-like properties of the cells, thereby suggesting a more comprehensive therapy for TNBC patients in future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/farmacologia , Fatores de Transcrição SOXB1/genética , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Paclitaxel/uso terapêutico , Esferoides Celulares , Transcriptoma , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Proteína 1 Relacionada a Twist/metabolismo
16.
Sci Rep ; 7(1): 1108, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439121

RESUMO

Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remain a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. Additionally, we show that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.


Assuntos
Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Biologia Computacional/métodos , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Metagenômica/métodos , Petróleo/metabolismo , Bactérias/classificação , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Sci Rep ; 6: 32593, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581498

RESUMO

Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1's role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Redes Reguladoras de Genes , Neurônios/metabolismo , Proteína Desglicase DJ-1/genética , Receptores de LDL/genética , Vesiculovirus/crescimento & desenvolvimento , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/virologia , Mitofagia , Neurônios/patologia , Neurônios/virologia , Estresse Oxidativo , Proteína Desglicase DJ-1/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Vesiculovirus/genética , Vesiculovirus/patogenicidade , Replicação Viral/genética
18.
Environ Pollut ; 216: 548-558, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27317496

RESUMO

Bacterial degradation of crude oil in response to nutrient treatments has been vastly studied. But there is a paucity of information on kinetic parameters of crude oil degradation. Here we report the nutrient stimulated kinetic parameters of crude oil degradation assessed in terms of CO2 production and oil removal by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2. The hydrocarbon degradation rate of P. aeruginosa AKS1 in oil only amended sediment was 10.75 ± 0.65 µg CO2-C g(-1) sediment day(-1) which was similar to degradation rate in sediments with no oil. In presence of both inorganic N & P, the degradation rate increased to 47.22 ± 1.32 µg CO2-C g(-1) sediment day(-1). The half-saturation constant (Ks) and maximum degradation rate (Vmax) for P. aeruginosa AKS1 under increasing N and saturating P concentration were 13.57 ± 0.53 µg N g(-1) sediment and 39.36 ± 1.42 µg CO2-C g(-1) sediment day(-1) respectively. The corresponding values at increasing P and a constant N concentration were 1.60 ± 0.13 µg P g(-1) sediment and 43.90 ± 1.03 µg CO2-C g(-1) sediment day(-1) respectively. Similarly the degradation rate of Bacillus sp. AKS2 in sediments amended with both inorganic nutrients N & P was seven fold higher than the rates in oil only or nutrient only treated sediments. The Ks and Vmax estimates of Bacillus sp. AKS2 under increasing N and saturating P concentration were 9.96 ± 1.25 µg N g(-1) sediment and 59.96 ± 7.56 µg CO2-C g(-1) sediment day(-1) respectively. The corresponding values for P at saturating N concentration were 0.46 ± 0.24 µg P g(-1) sediment and 63.63 ± 3.54 µg CO2-C g(-1) sediment day(-1) respectively. The rates of CO2 production by both isolates were further stimulated when oil concentration was increased above 12.5 mg g(-1) sediment. However, oil degradation activity declined at oil concentration above 40 mg g(-1) sediment when treated with constant nutrient: oil ratio. Both isolates exhibited alkane hydroxylase activity but aromatic degrading catechol 1, 2-dioxygenase and catechol 2, 3-dioxygenase activities were shown by P. aeruginosa AKS1 only.


Assuntos
Bacillus/metabolismo , Petróleo/metabolismo , Pseudomonas aeruginosa/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Índia , Cinética , Indústria de Petróleo e Gás , Petróleo/análise
19.
Genome Announc ; 4(3)2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27174279

RESUMO

We report here the 4.57-Mb draft genome sequence of hydrocarbon-degrading Enterobacter cloacae strain S1:CND1 isolated from oil-contaminated soil in Guwahati, India. S1:CND1 contains 4,205 coding sequences and has a G+C content of 57.45%. This is the first report of the genome sequence of an E. cloacae adapted to an oil-contaminated environment.

20.
Genome Announc ; 4(3)2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27174281

RESUMO

Here, we report the 2.6 Mb draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from oil-contaminated soil in Guwahati, India. CNV2 contains 2,545 coding sequences and has a G+C content of 33.2%. This is the first report of the genome sequence of an S. saprophyticus adapted to an oil-contaminated environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...