Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966207

RESUMO

Background: Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods: Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results: EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion: The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.


Assuntos
Apoptose , Caspase 3 , Diospyros , Extratos Vegetais , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2 , Humanos , Masculino , Apoptose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Diospyros/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
2.
PLoS One ; 19(1): e0296727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277388

RESUMO

Carbapenem-resistant Enterobacterales (CRE) is considered a paramount threat due to its rapid spread and high mortality rate. Klebsiella pneumoniae carbapenemases (KPCs), specifically KPC-2, are prevalent enzymes responsible for carbapenem resistance in many countries. While combinations of antibiotics are commonly used, they must be tailored to match the remaining susceptibility of the infecting strains. Therefore, there is a need to develop the ß-lactamase inhibitor to effectively address this issue. ß-lactamase inhibitor protein (BLIP) and its variants, BLIP-I and BLIP-II, have demonstrated the ability to inhibit class A ß-lactamases. In particular, BLIP-II shows strong binding to the KPC-2 carbapenemase, making it a potential candidate for inhibition. To improve the intracellular penetration of BLIP-II, a cell-penetrating peptide (CPP) was employed. In this study, a KRK-rich peptide was introduced at either the N-terminal or C-terminal region of tBLIP-II, excluding the signal sequence of the BLIP-II protein. tBLIP-II, tBLIP-II-CPP, and CPP-BLIP-II were successfully expressed, and the chimeric proteins retained inhibitory activity compared to tBLIP-II alone. It is apparent that homology modeling demonstrated neither the poly-histidine tag nor the CPP interfered with the essential interaction residues of tBLIP-II. Interestingly, BLIP-II-CPP exhibited the highest inhibitory activity, reducing the minimal inhibitory concentration (MIC) of meropenem by 8 folds. Moreover, the combination of tBLIP-CPP with meropenem significantly decreased the viable bacterial cell count compared to the combination of tBLIP-II with meropenem or meropenem alone. These findings suggest that tBLIP-CPP is a promising candidate for restoring carbapenem susceptibility against CRE and provides a valuable therapeutic option for infections caused by CRE.


Assuntos
Peptídeos Penetradores de Células , Inibidores de beta-Lactamases , Meropeném/farmacologia , Inibidores de beta-Lactamases/farmacologia , Klebsiella pneumoniae , Peptídeos Penetradores de Células/farmacologia , Cefalosporinase , Antibacterianos/farmacologia , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
3.
PLoS One ; 18(11): e0294287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972089

RESUMO

Drug-resistant Enterobacterales infections are a great health concern due to the lack of effective treatments. Consequently, finding novel antimicrobials or combining therapies becomes a crucial approach in addressing this problem. BP203 and MAP-0403 J-2, novel antimicrobial peptides, have exhibited effectiveness against Gram-negative bacteria. In this study, we assessed the in vitro antibacterial activity of BP203 and MAP-0403 J-2, along with their synergistic interaction with conventional antibiotics including colistin, rifampicin, chloramphenicol, ceftazidime, meropenem, and ciprofloxacin against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. The minimal inhibitory concentrations (MIC) of BP203 and MAP-0403 J-2 against tested E. coli isolates were 2-16 and 8-32 µg/mL, respectively. However, for the majority of K. pneumoniae isolates, the MIC of BP203 and MAP-0403 J-2 were >128 µg/mL. Notably, our results demonstrated a synergistic effect when combining BP203 with rifampicin, meropenem, or chloramphenicol, primarily observed in most K. pneumoniae isolates. In contrast, no synergism was evident between BP203 and colistin, chloramphenicol, ceftazidime, rifampicin, or ciprofloxacin when tested against all E. coli isolates. Furthermore, synergistic effects between MAP-0403 J-2 and rifampicin, ceftazidime or colistin were observed against the majority of E. coli isolates. Similarly, the combined effect of MAP-0403 J-2 with rifampicin or chloramphenicol was synergistic in the majority of K. pneumoniae isolates. Importantly, these peptides displayed the stability at high temperatures, across a wide range of pH values, in specific serum concentrations and under physiological salt conditions. Both peptides also showed no significant hemolysis and cytotoxicity against mammalian cells. Our findings suggested that BP203 and MAP-0403 J-2 are promising candidates against colistin-resistant E. coli. Meanwhile, the synergism of these peptides and certain antibiotics could be of great therapeutic value as antimicrobial drugs against infections caused by colistin-resistant E. coli and K. pneumoniae.


Assuntos
Antibacterianos , Colistina , Antibacterianos/farmacologia , Colistina/farmacologia , Escherichia coli , Klebsiella pneumoniae , Ceftazidima/farmacologia , Meropeném/farmacologia , Rifampina/farmacologia , Peptídeos Antimicrobianos , Sinergismo Farmacológico , Cloranfenicol/farmacologia , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana
4.
Sci Rep ; 13(1): 8084, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208425

RESUMO

Pinostrobin (PN) is the most abundant flavonoid found in fingerroot. Although the anti-leukemic properties of PN have been reported, its mechanisms are still unclear. MicroRNAs (miRNAs) are small RNA molecules that function in posttranscriptional silencing and are increasingly being used in cancer therapy. The aims of this study were to investigate the effects of PN on proliferation inhibition and induction of apoptosis, as well as the involvement of miRNAs in PN-mediated apoptosis in acute leukemia. The results showed that PN reduced cell viability and induced apoptosis in acute leukemia cells via both intrinsic and extrinsic pathways. A bioinformatics approach and Protein-Protein Interaction (PPI) network analysis revealed that ataxia-telangiectasia mutated kinase (ATM), one of the p53 activators that responds to DNA damage-induced apoptosis, is a crucial target of PN. Four prediction tools were used to predict ATM-regulated miRNAs; miR-181b-5p was the most likely candidate. The reduction in miR-181b-5 after PN treatment was found to trigger ATM, resulting in cellular apoptosis. Therefore, PN could be developed as a drug for acute leukemia; in addition, miR-181b-5p and ATM may be promising therapeutic targets.


Assuntos
Flavanonas , Leucemia Mieloide Aguda , MicroRNAs , Humanos , MicroRNAs/metabolismo , Flavanonas/farmacologia , Apoptose/genética
5.
Front Cell Infect Microbiol ; 13: 1153868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113135

RESUMO

Introduction: Infections caused by drug-resistant Klebsiella pneumoniae are now a serious problem for public health, associated with high morbidity and mortality due to limited treatment options. Therefore, new antibacterial agents or a combination of agents as the first line of treatment are urgently needed. K11 is a novel antimicrobial peptide (AMP) that has demonstrated in vitro antimicrobial activity against several types of bacteria. Additionally, K11 has previously shown no hemolytic activity. Herein, the antibacterial activity, the synergistic action of K11 in combination with different conventional antibiotics and the antibiofilm activity of K11 against multidrug-resistant (MDR) and extensively drug-resistant (XDR) K. pneumoniae were investigated. Meanwhile, the stability and ability to induce the bacterial resistance of K11 were also tested. Methods: Fifteen clinical isolates of MDR/XDR K. pneumoniae were used in this study. The minimum inhibitory concentration (MIC) of K11 against these isolates was determined by the broth microdilution method. In vitro synergy between K11 and antibiotics was evaluated using the checkerboard methodology. The antibiofilm activity of K11 against K. pneumoniae strong biofilm producers were explored by the crystal violet staining. The stability in different environments and resistance induction of K11 were evaluated by MIC determination. Results: The MIC values of K11 against MDR/XDR K. pneumoniae isolates were 8-512 µg/mL. Intriguingly, the synergistic effects were clearly observed for K11 in combination with chloramphenicol, meropenem, rifampicin, or ceftazidime, whereas no synergy was observed when K11 was combined with colistin. Besides, K11 effectively prevented biofilm formation against K. pneumoniae strong biofilm producers in a concentration-dependent manner starting at 0.25×MIC and exerted an enhancing effect when administered in combination with meropenem, chloramphenicol, or rifampicin. Additionally, K11 demonstrated high thermal and wide pH stability along with good stability in serum and physiological salts. Significantly, K. pneumoniae showed no induction of resistance even after prolonged exposure to a sub-inhibitory concentration of K11. Conclusion: These findings indicate that K11 is a promising candidate with potent antibacterial and antibiofilm activities without inducing resistance and acts synergistically with conventional antibiotics against drug-resistant K. pneumoniae.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Antibacterianos/uso terapêutico , Meropeném/farmacologia , Peptídeos Antimicrobianos , Rifampina/farmacologia , Farmacorresistência Bacteriana Múltipla , Biofilmes , Cloranfenicol/farmacologia , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054816

RESUMO

The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.


Assuntos
Técnicas de Inativação de Genes , Genes de Protozoários , Loci Gênicos , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação , Ribonucleases/genética , Schistosoma mansoni/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Catálise , Feminino , Dosagem de Genes , Humanos , Mutação/genética , Oligonucleotídeos/metabolismo , Reparo de DNA por Recombinação/genética , Padrões de Referência , Transcrição Gênica , Transgenes
7.
EXCLI J ; 20: 709-721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907539

RESUMO

Leukemia is the most common type of hematological malignancies. Several natural products including bioactive peptides have been explored and studied for their anti-leukemic activities. In the present study, anti-leukemic peptide, IGTLILM (IM-7), was isolated and identified from the protein hydrolysate of sesame seeds by reverse phase-solid phase extraction, off-gel fractionation and nano LC-MS/MS. The cytotoxic effects of IM-7 were studied in MOLT-4 and NB4 acute leukemic cell lines using an MTT assay. The induction of apoptosis and autophagy was investigated by flow cytometry using Annexin V-FITC/PI staining and anti-LC3/FITC antibodies, respectively. The mRNA alterations of apoptotic and autophagic-related genes were determined by reverse transcription-quantitative PCR. The present study found that IM-7 inhibited the proliferation of MOLT-4 and NB4 cells in dose-dependent manner, but it showed a minimal effect on healthy mononuclear cells. IM-7 activated apoptosis and autophagy through the upregulation of CASP3, ULK1 and BECN1 and the downregulation of BCL2. In addition, IM-7 enhanced the cytotoxic effect of the anti-leukemic drug, daunorubicin. The findings suggested that IM-7 was potent to suppress the proliferation of MOLT-4 and NB4 leukemic cells and induce apoptosis and autophagy through the regulation of caspase 3-Bcl-2 and ULK1-Beclin1, respectively.

8.
Planta Med ; 87(7): 560-569, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33757145

RESUMO

Despite the efficacy of chemotherapy, the adverse effects of chemotherapeutic drugs are considered a limitation of leukemia treatment. Therefore, a chemotherapy drug with minimal side effects is currently needed. One interesting molecule for this purpose is a bioactive peptide isolated from plants since it has less toxicity to normal cells. In this study, we extracted protein from the Zingiber officinale rhizome and performed purification to acquire the peptide fraction with the highest cytotoxicity using ultrafiltration, reverse-phase chromatography, and off-gel fractionation to get the peptide fraction that contained the highest cytotoxicity. Finally, a novel antileukemic peptide, P2 (sequence: RALGWSCL), was identified from the highest cytotoxicity fraction. The P2 peptide reduced the cell viability of NB4, MOLT4, and Raji cell lines without an effect on the normal peripheral blood mononuclear cells. The combination of P2 and daunorubicin significantly decreased leukemic cell viability when compared to treatment with either P2 or daunorubicin alone. In addition, leukemic cells treated with P2 demonstrated increased apoptosis and upregulation of caspase 3, 8, and 9 gene expression. Moreover, we also examined the effects of P2 on p53, which is the key regulator of apoptosis. Our results showed that treatment of leukemic cells with P2 led to the upregulation of p53 and Bcl-2-associated X protein, and the downregulation of B-cell lymphoma 2, indicating that p53 is involved in apoptosis induction by P2. The results of this study are anticipated to be useful for the development of P2 as an alternative drug for the treatment of leukemia.


Assuntos
Zingiber officinale , Apoptose , Linhagem Celular , Leucócitos Mononucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2
10.
Oncol Lett ; 21(1): 32, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33262824

RESUMO

Sesamin, the major furofuran lignan found in the seeds of Sesamum indicum L., has been investigated for its various medicinal properties. In the present study, the anti-leukemic effects of sesamin and its underlying mechanisms were investigated in MOLT-4 and NB4 acute leukemic cells. Leukemic cells were treated with various concentrations of sesamin. Cell viability was determined using an MTT assay. Flow cytometry using Annexin V-FITC/PI staining and anti-LC3/FITC antibodies was applied to detect the level of apoptosis and autophagy, respectively. Reverse transcription-quantitative PCR was performed to examine the alterations in the mRNA expression of apoptotic and autophagic genes. In addition, bioinformatics tools were used to predict the possible interactions between sesamin and its targets. The results revealed that sesamin inhibited MOLT-4 and NB4 cell proliferation in a dose-dependent manner. In addition, sesamin induced both apoptosis and autophagy. In sesamin-treated cells, the gene expression levels of caspase 3 and unc-51 like autophagy activating kinase 1 (ULK1) were upregulated, while those of mTOR were downregulated compared with in the control. Notably, the protein-chemical interaction network indicated that caspase 3, mTOR and ULK1 were the essential factors involved in the effects of sesamin treatment, as with anticancer agents, such as rapamycin, AZD8055, Torin1 and 2. Overall, the findings of the present study suggested that sesamin inhibited MOLT-4 and NB4 cell proliferation, and induced apoptosis and autophagy through the regulation of caspase 3 and mTOR/ULK1 signaling, respectively.

11.
EXCLI J ; 19: 582-595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483405

RESUMO

6-gingerol is a traditional medicine that possesses anti-cancer activity against several types of cancer. However, the mechanism of action still remains unclear. Therefore, this study explored the effects of 6-gingerol on anti-leukemic mechanisms in NB4, MOLT4, and Raji leukemic cell. Results indicated that 6-gingerol inhibited cell proliferation and induced cell apoptosis in these 3 cell lines. Moreover, 6-gingerol was shown to increase the mRNA expression of the caspase family thereby suggesting that 6-gingerol induced apoptosis through the caspase-dependent pathway. To explore the signaling pathway regulating 6-gingerol induced apoptosis, we utilized and integrated the network pharmacology approach together with experimental investigations. Targets of 6-gingerol were identified from ChEMBL and STITCH databases, which were used for constructing the protein-protein interaction (PPI) network. Results from the PPI network indicated that p53 was a key regulator. Moreover, it was found that 6-gingerol could increase the levels of p53 mRNA in all leukemic cell lines. Thus, 6-gingerol has shown to have anti-cancer activity. In addition, p53, BAX and BCL2 could be involved in the apoptosis pathway of these leukemic cells. This study is anticipated to be useful for the development of 6-gingerol as an anti-leukemic drug in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...