Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 17(2): 024001, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32191928

RESUMO

OBJECTIVE: We introduce a novel, phase-based, functional connectivity descriptor that encapsulates not only the synchronization strength between distinct brain regions, but also the time-lag between the involved neural oscillations. The new estimator employs complex-valued measurements and results in a brain network sketch that lives on the smooth manifold of Hermitian Positive Definite (HPD) matrices. APPROACH: Leveraging the HPD property of the proposed descriptor, we adapt a recently introduced dimensionality reduction methodology that is based on Riemannian Geometry and discriminatively detects the recording sites which best reflect the differences in network organization between contrasting recording conditions in order to overcome the problem of high-dimensionality, usually encountered in the connectivity patterns derived from multisite encephalographic recordings. MAIN RESULTS: The proposed framework is validated using an EEG dataset that refers to the challenging problem of differentiating between attentive and passive visual responses. We provide evidence that the reduced connectivity representation facilitates high classification performance and caters for neuroscientific explorations. SIGNIFICANCE: Our paper is the very first that introduces an advanced connectivity descriptor that can take advantage of Riemannian geometry tools. The proposed descriptor, that inherently and simultaneously captures both the strength and the corresponding time-lag of the phase synchronization, is the first phase-based descriptor tailored to leverage the benefits of Riemannian geometry.


Assuntos
Algoritmos , Eletroencefalografia , Encéfalo/diagnóstico por imagem
2.
IEEE Trans Biomed Eng ; 67(1): 245-255, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30998456

RESUMO

OBJECTIVE: Spatial covariance matrices are extensively employed as brain activity descriptors in brain computer interface (BCI) research that, typically, involve the whole array of sensors. Here, we introduce a methodological framework for delineating the subset of sensors, the covariance structure of which offers a reduced, but more powerful, representation of brain's coordination patterns that ultimately leads to reliable mind reading. METHODS: Adopting a Riemannian geometry approach, we turn the problem of sensor selection as a maximization of a functional that is computed over the manifold of symmetric positive definite (SPD) matrices and encapsulates class separability in a way that facilitates the search among subsets of different size. The introduced optimization task, namely discriminative covariance reduction (DCR), lacks an analytical solution and is tackled via the cross-entropy optimization technique. RESULTS: Based on two different EEG datasets and three distinct classification schemes, we demonstrate that the DCR approach provides a noteworthy gain in terms of accuracy (in some cases exceeding 20%) and a remarkable reduction in classification time (on average 82%). Additionally, results include the intriguing empirical finding that the pattern of selected sensors in the case of disabled persons depends on the type of disability. CONCLUSION: The proposed DCR framework can speed up the classification time in BCI-systems operating on the SPD manifolds by simultaneously enhancing their reliability. This is achieved without sacrificing the neuroscientific interpretability endowed in the topographical arrangement of the selected sensors. SIGNIFICANCE: Riemannian geometry is exploited for DCR in BCI systems, in a dimensionality-agnostic manner, guaranteeing improved performance.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Condução de Veículo , Encéfalo/fisiologia , Bases de Dados Factuais , Feminino , Humanos , Imaginação/fisiologia , Masculino , Pessoa de Meia-Idade
3.
Sci Rep ; 8(1): 13176, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181532

RESUMO

Gaze-based keyboards offer a flexible way for human-computer interaction in both disabled and able-bodied people. Besides their convenience, they still lead to error-prone human-computer interaction. Eye tracking devices may misinterpret user's gaze resulting in typesetting errors, especially when operated in fast mode. As a potential remedy, we present a novel error detection system that aggregates the decision from two distinct subsystems, each one dealing with disparate data streams. The first subsystem operates on gaze-related measurements and exploits the eye-transition pattern to flag a typo. The second, is a brain-computer interface that utilizes a neural response, known as Error-Related Potentials (ErrPs), which is inherently generated whenever the subject observes an erroneous action. Based on the experimental data gathered from 10 participants under a spontaneous typesetting scenario, we first demonstrate that ErrP-based Brain Computer Interfaces can be indeed useful in the context of gaze-based typesetting, despite the putative contamination of EEG activity from the eye-movement artefact. Then, we show that the performance of this subsystem can be further improved by considering also the error detection from the gaze-related subsystem. Finally, the proposed bimodal error detection system is shown to significantly reduce the typesetting time in a gaze-based keyboard.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Movimentos Oculares , Interface Usuário-Computador , Adulto , Algoritmos , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
4.
Data Brief ; 15: 1048-1056, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29204464

RESUMO

We present a dataset that combines multimodal biosignals and eye tracking information gathered under a human-computer interaction framework. The dataset was developed in the vein of the MAMEM project that aims to endow people with motor disabilities with the ability to edit and author multimedia content through mental commands and gaze activity. The dataset includes EEG, eye-tracking, and physiological (GSR and Heart rate) signals collected from 34 individuals (18 able-bodied and 16 motor-impaired). Data were collected during the interaction with specifically designed interface for web browsing and multimedia content manipulation and during imaginary movement tasks. The presented dataset will contribute towards the development and evaluation of modern human-computer interaction systems that would foster the integration of people with severe motor impairments back into society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...