Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Angew Chem Int Ed Engl ; 57(18): 4946-4950, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473994

RESUMO

Iron oxide nanoparticles have been used in preclinical studies to label stem cells for non-invasive tracking and homing. The search continues for novel particle candidates that are suitable for clinical applications. Since standard analyses to investigate cell-particle interactions and safety are labor-intensive, an efficient procedure is required to guide future particle development and to exclude adverse health effects. The application of combined Raman trapping microscopy with fluidic chips is reported for the analysis of single cells labeled with different types of aminated iron oxide particles. Multivariate data analysis revealed Raman signal differences that could be clearly assigned to cell-particle interactions and cytotoxicity, respectively. A validation dataset verified that more than 95 % of the spectra were correctly classified. Thus, our approach enables rapid discrimination of non-hazardous from cytotoxic nanoparticles as a prerequisite for safe clinical applications.


Assuntos
Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/química , Análise de Célula Única , Humanos , Células-Tronco Mesenquimais/citologia , Análise Espectral Raman
3.
Analyst ; 141(7): 2284-95, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26958659

RESUMO

Cancer therapy via redirected lysis mediated by antibodies and antibody-derived agents relies on the availability of substantial numbers of sufficiently active immune effector cells. To monitor antitumor responses before and during therapy, sensitive methods are needed, capable of quantitating specific lysis of target cells. Here we present a chip-based single-cell cytometric assay, which uses adherent human target cells arrayed in structured micro-fields. Using a fluorescent indicator of cell death and time-lapse microscopy in an automated high-throughput mode, we measured specific target cell lysis by activated human NK cells, mediated by the therapeutic single chain triplebody SPM-2 (33-16-123). This antibody-derived tri-specific fusion protein carries binding sites for the myeloid antigens CD33 and CD123 and recruits NK cells via a binding site for the Fc-receptor CD16. Specific lysis increased with increasing triplebody concentration, and the single-cell assay was validated by direct comparison with a standard calcein-release assay. The chip-based approach allowed measurement of lysis events over 16 hours (compared to 4 hours for the calcein assay) and required far smaller numbers of primary cells. In addition, dynamic properties inaccessible to conventional methods provide new details about the activation of cytolytic effector cells by antibody-derived agents. Thus, the killing rate exhibited a dose-dependent maximum during the reaction interval. In clinical applications ex vivo monitoring of NK activity of patient's endogenous cells will likely help to choose appropriate therapy, to detect impaired or recovered NK function, and possibly to identify rare subsets of cancer cells with particular sensitivity to effector-cell mediated lysis.


Assuntos
Células Matadoras Naturais/citologia , Procedimentos Analíticos em Microchip/métodos , Análise de Célula Única/métodos , Anticorpos de Cadeia Única/metabolismo , Morte Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA