Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(19): 6096-6105, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33960790

RESUMO

Pt/Ag solid solution alloy nanoparticles (NPs) with mean size below 3 nm were obtained with composition in miscibility gaps by cosputtering onto liquid polyethylene glycol (PEG, MW = 600). Adjusting the sputtering currents from 10 to 50 mA did not influence the particle sizes obviously but caused a substantial difference in the composition and distributions of Pt/Ag NPs. This is different from sputtered Pt/Au NPs where particle size is correlated with composition. For a pair of sputtering currents, the formed Pt/Ag alloy NPs have a range of compositions. The normal distribution with Pt of 60.2 ± 16.2 at % is observed for the Pt/Ag sample with a nominal Pt content of 55.9 at %, whereas Pt-rich (85.1 ± 14.0 at % Pt) and Ag-rich (19.8 ± 12.2 at % Pt) Pt/Ag samples with nominal Pt contents of 90.9 and 11.9 at % contain more pure Pt and pure Ag NPs, respectively. Different from NPs obtained in PEG, the sputtered NPs on TEM grids had more uniform composition for a longer sputtering time along with a significant increase of particle sizes. This reveals that PEG hindered the combination of NPs and clusters, resulting in small particle sizes even for long time sputtering and broader composition distributions. Thus, the samples obtained in PEG have the compositions mainly determined by the random atom combination in the vacuum chamber and possibly in initial landing of atom/clusters on the PEG surface.

2.
Langmuir ; 36(13): 3386-3392, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176501

RESUMO

Metal@semiconductor core-shell nanoparticles (NPs) are widely used in photocatalysts, sensors, and optical applications owing to their unique metal-semiconductor interface and the integration of the properties from both core and shell materials. Although many efforts have been made toward the precise synthesis of Au@Cu2O core-shell structures, the chemical stability of Au@Cu2O aqueous suspensions, which is of great significance in many related applications, is not mentioned in any published research. Herein we report the synthesis of Au@Cu2O core-shell NPs with small shell thickness from 2 to 40 nm through a wet-chemistry method. The UV-vis absorption properties are found to be tunable with Cu2O thickness in the range of 2-40 nm. Furthermore, the chemical stability of Au@Cu2O core-shell nanoparticle suspensions in water/ethanol mixed solvents is investigated. It is found that water/ethanol mixed solvents with a larger amount of water are more likely to deteriorate the stability of Au@Cu2O NPs by oxidizing Cu2O to CuO. The results from this work may provide useful information for the preparation of metal@Cu2O water-based suspensions that are expected to be used for SERS, photocatalyst, or photothermal applications.

3.
Langmuir ; 36(12): 3004-3015, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32150418

RESUMO

Pt/Au alloy nanoparticles (NPs) in a wide composition range have been synthesized by room-temperature simultaneous sputter deposition from two independent magnetron sources onto liquid PEG (MW = 600). The prepared NPs were alloyed with the face-centered cubic (fcc) structure. In addition, the particle sizes, composition, and shape are strongly correlated but can be tailored by an appropriate variation of the sputtering parameters. No individual particle but large agglomerates with partial alloy structure formed at Pt content of less than 16 atom %. Highly dispersed NPs with no agglomeration were observed in PEG when the quantity of Pt is more than 26 atom %. On the other hand, a small amount of Pt could terminate the agglomeration of Au when sputtering on the grids for transmission electron microscope observation. Our experiment and computer simulation carried out by two different methods indicate that the composition-dependent particle size of Pt/Au can be explained by the atomic concentration, formation energy of the cluster, and interaction between different metal atoms and the PEG molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...