Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 280: 120312, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574120

RESUMO

Activity-dependent myelination is a fundamental mode of brain plasticity which significantly influences network function. We recently discovered that absence seizures, which occur in multiple forms of generalized epilepsy, can induce activity-dependent myelination, which in turn promotes further progression of epilepsy. Structural alterations of myelin are likely to be widespread, given that absence seizures arise from an extensive thalamocortical network involving frontoparietal regions of the bilateral hemispheres. However, the temporal course and spatial extent of myelin plasticity is unknown, due to limitations of gold-standard histological methods such as electron microscopy (EM). In this study, we leveraged magnetization transfer and diffusion MRI for estimation of g-ratios across major white matter tracts in a mouse model of generalized epilepsy with progressive absence seizures. EM was performed on the same brains after MRI. After seizure progression, we found increased myelination (decreased g-ratios) throughout the anterior portion (genu-to-body) of the corpus callosum but not in the posterior portion (body-splenium) nor in the fornix or the internal capsule. Curves obtained from averaging g-ratio values at every longitudinal point of the corpus callosum were statistically different with p<0.001. Seizure-associated myelin differences found in the corpus callosum body with MRI were statistically significant (p = 0.0027) and were concordant with EM in the same region (p = 0.01). Notably, these differences were not detected by diffusion tensor imaging. This study reveals widespread myelin structural change that is specific to the absence seizure network. Furthermore, our findings demonstrate the potential utility and importance of MRI-based g-ratio estimation to non-invasively detect myelin plasticity.


Assuntos
Imagem de Tensor de Difusão , Epilepsia Generalizada , Animais , Camundongos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Corpo Caloso/patologia , Convulsões/diagnóstico por imagem
2.
Epilepsia ; 63(9): 2301-2311, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751514

RESUMO

OBJECTIVE: We explore the possibility of using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to discern microstructural abnormalities in the hippocampus indicative of mesial temporal sclerosis (MTS) at the subfield level. METHODS: We analyzed data from 57 patients with refractory epilepsy who previously underwent 3.0-T magnetic resonance imaging (MRI) including DTI as a standard part of presurgical workup. We collected information about each subject's seizure semiology, conventional electroencephalography (EEG), high-density EEG, positron emission tomography reports, surgical outcome, and available histopathological findings to assign a final diagnostic category. We also reviewed the radiology MRI report to determine the radiographic category. DTI- and NODDI-based metrics were obtained in the hippocampal subfields. RESULTS: By examining diffusion characteristics among subfields in the final diagnostic categories, we found lower orientation dispersion indices and elevated axial diffusivity in the dentate gyrus in MTS compared to no MTS. By similarly examining among subfields in the different radiographic categories, we found all diffusion metrics were abnormal in the dentate gyrus and CA1. We finally examined whether diffusion imaging would better inform a radiographic diagnosis with respect to the final diagnosis, and found that dentate diffusivity suggested subtle changes that may help confirm a positive radiologic diagnosis. SIGNIFICANCE: The results suggest that diffusion metric analysis at the subfield level, especially in dentate gyrus and CA1, maybe useful for clinical confirmation of MTS.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Imagem de Tensor de Difusão/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/patologia , Humanos , Esclerose/diagnóstico por imagem , Esclerose/patologia
3.
J Acoust Soc Am ; 144(1): 254, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30075660

RESUMO

A model and method to accurately estimate the local speed of sound in tissue from pulse-echo ultrasound data is presented. The model relates the local speeds of sound along a wave propagation path to the average speed of sound over the path, and allows one to avoid bias in the sound-speed estimates that can result from overlying layers of subcutaneous fat and muscle tissue. Herein, the average speed of sound using the approach by Anderson and Trahey is measured, and then the authors solve the proposed model for the local sound-speed via gradient descent. The sound-speed estimator was tested in a series of simulation and ex vivo phantom experiments using two-layer media as a simple model of abdominal tissue. The bias of the local sound-speed estimates from the bottom layers is less than 6.2 m/s, while the bias of the matched Anderson's estimates is as high as 66 m/s. The local speed-of-sound estimates have higher standard deviation than the Anderson's estimates. When the mean local estimate is computed over a 5-by-5 mm region of interest, its standard deviation is reduced to less than 7 m/s.


Assuntos
Simulação por Computador , Interpretação de Imagem Assistida por Computador , Som , Ultrassonografia , Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ondas Ultrassônicas , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...