Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828343

RESUMO

With the changing climatic conditions and reducing labor-water availability, the potential contribution of aerobic rice varieties and cultivation system to develop a sustainable rice based agri-food system has never been more important than today. Keeping in mind the goal of identifying high-yielding aerobic rice varieties for wider adaptation, a set of aerobic rice breeding lines were developed and evaluated for grain yield, plant height, and days to 50% flowering in 23 experiments conducted across different location in Philippines, India, Bangladesh, Nepal, and Lao-PDR between 2014 and 2017 in both wet and dry seasons. The heritability for grain yield ranged from 0.52 to 0.90. The season-wise two-stage analysis indicated significant genotype x location interaction for yield under aerobic conditions in both wet and dry seasons. The genotype × season × location interaction for yield was non-significant in both seasons indicating that across seasons the genotypes at each location did not show variability in the grain yield performance. Mean grain yield of the studied genotypes across different locations/seasons ranged from 2,085 to 6,433 Kg ha-1. The best-fit model for yield stability with low AIC value (542.6) was AMMI(1) model. The identified stable genotypes; IR 92521-143-2-2-1, IR 97048-10-1-1-3, IR 91326-7-13-1-1, IR 91326-20-2-1-4, and IR 91328-43-6-2-1 may serve as novel breeding material for varietal development under aerobic system of rice cultivation. High yield and stable performance of promising breeding lines may be due to presence of the earlier identified QTLs including grain yield under drought, grain yield under aerobic conditions, nutrient uptake, anaerobic germination, adaptability under direct seeded conditions, and tolerance to biotic stress resistance such as qDTY 2.1 , qDTY 3.1 , qDTY 12.1 , qNR 5.1 , AG 9.1 , qEVV 9.1 , qRHD 1.1 , qRHD 5.1, qRHD 8.1 qEMM 1.1 , qGY 6.1 , BPH3, BPH17, GM4, xa4, Xa21, Pita, and Pita2. The frequency of xa4 gene was highest followed by qAG 9.1, GM4, qDTY 3.1 , qDTY 2.1 , qGY 6.1, and qDTY 12.1.

2.
Sci Rep ; 8(1): 9245, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915310

RESUMO

Flooding is one of the major constraints for rice production in rainfed lowlands, especially in years and areas of high rainfall. Incorporating the Sub1 (Submergence1) gene into high yielding popular varieties has proven to be the most feasible approach to sustain rice production in submergence-prone areas. Introgression of this QTL into popular varieties has resulted in considerable improvement in yield after flooding. However, its impact under non-flooded conditions or years have not been thoroughly evaluated which is important for the farmers to accept and adopt any new version of their popular varieties. The present study was carried out to evaluate the effect of Sub1 on grain yield of rice in different genetic backgrounds, under non-submergence conditions, over years and locations. The study was carried out using head to head trials in farmer's fields, which enable the farmers to more accurately compare the performance of Sub1 varieties with their recurrent parents under own management. The data generated from different head to head trials revealed that the grain yield of Sub1 varieties was either statistically similar or higher than their non-Sub1 counterparts under non-submergence conditions. Thus, Sub1 rice varieties show no instance of yield penalty of the introgressed gene.


Assuntos
Adaptação Fisiológica/genética , Oryza/genética , Cruzamento/métodos , Secas , Inundações , Genes de Plantas/genética , Locos de Características Quantitativas/genética
3.
Front Plant Sci ; 8: 1879, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163604

RESUMO

Reducing water requirements and lowering environmental footprints require attention to minimize risks to food security. The present study was conducted with the aim to identify appropriate root traits enhancing rice grain yield under alternate wetting and drying conditions (AWD) and identify stable, high-yielding genotypes better suited to the AWD across variable ecosystems. Advanced breeding lines, popular rice varieties and drought-tolerant lines were evaluated in a series of 23 experiments conducted in the Philippines, India, Bangladesh, Nepal and Cambodia in 2015 and 2016. A large variation in grain yield under AWD conditions enabled the selection of high-yielding and stable genotypes across locations, seasons and years. Water savings of 5.7-23.4% were achieved without significant yield penalty across different ecosystems. The mean grain yield of genotypes across locations ranged from 3.5 to 5.6 t/ha and the mean environment grain yields ranged from 3.7 (Cambodia) to 6.6 (India) t/ha. The best-fitting Finlay-Wilkinson regression model identified eight stable genotypes with mean grain yield of more than 5.0 t/ha across locations. Multidimensional preference analysis represented the strong association of root traits (nodal root number, root dry weight at 22 and 30 days after transplanting) with grain yield. The genotype IR14L253 outperformed in terms of root traits and high mean grain yield across seasons and six locations. The 1.0 t/ha yield advantage of IR14L253 over the popular cultivar IR64 under AWD shall encourage farmers to cultivate IR14L253 and also adopt AWD. The results suggest an important role of root architectural traits in term of more number of nodal roots and root dry weight at 10-20 cm depth on 22-30 days after transplanting (DAT) in providing yield stability and preventing yield reduction under AWD compared to continuous flooded conditions. Genotypes possessing increased number of nodal roots provided higher yield over IR64 as well as no yield reduction under AWD compared to flooded irrigation. The identification of appropriate root architecture traits at specific depth and specific growth stage shall help breeding programs develop better rice varieties for AWD conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...