Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol NMR ; 78(2): 109-117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421550

RESUMO

N-linked glycosylation is an essential and highly conserved co- and post-translational protein modification in all domains of life. In humans, genetic defects in N-linked glycosylation pathways result in metabolic diseases collectively called Congenital Disorders of Glycosylation. In this modification reaction, a mannose rich oligosaccharide is transferred from a lipid-linked donor substrate to a specific asparagine side-chain within the -N-X-T/S- sequence (where X ≠ Proline) of the nascent protein. Oligosaccharyltransferase (OST), a multi-subunit membrane embedded enzyme catalyzes this glycosylation reaction in eukaryotes. In yeast, Ost4 is the smallest of nine subunits and bridges the interaction of the catalytic subunit, Stt3, with Ost3 (or its homolog, Ost6). Mutations of any C-terminal hydrophobic residues in Ost4 to a charged residue destabilizes the enzyme and negatively impacts its function. Specifically, the V23D mutation results in a temperature-sensitive phenotype in yeast. Here, we report the reconstitution of both purified recombinant Ost4 and Ost4V23D each in a POPC/POPE lipid bilayer and their resonance assignments using heteronuclear 2D and 3D solid-state NMR with magic-angle spinning. The chemical shifts of Ost4 changed significantly upon the V23D mutation, suggesting a dramatic change in its chemical environment.


Assuntos
Hexosiltransferases , Lipossomos , Proteínas de Membrana , Ressonância Magnética Nuclear Biomolecular , Hexosiltransferases/genética , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lipossomos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação , Glicosilação , Subunidades Proteicas/química , Subunidades Proteicas/genética
2.
Protein Sci ; 31(10): e4438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173163

RESUMO

Ostrinia furnacalis is an invasive lepidopteran agricultural pest that relies on olfaction for mating and reproduction. Male moths have an extremely sensitive olfactory system that can detect the sex pheromones emitted by females over a great distance. Pheromone-binding proteins present in the male moth antenna play a key role in the pheromone uptake, transport, and release at the dendritic membrane of the olfactory neuron. Here, we report the first high-resolution NMR structure of a pheromone-binding protein from an Ostrinia species at pH 6.5. The core of the Ostrinia furnacalis PBP2 (OfurPBP2) consists of six helices, α1a (2-14), α1b (16-22), α2 (27-37), α3 (46-60), α4 (70-80), α5 (84-100), and α6 (107-124) surrounding a large hydrophobic pocket. The structure is stabilized by three disulfide bridges, 19-54, 50-108, and 97-117. In contrast to the unstructured C-terminus of other lepidopteran PBPs, the C-terminus of OfurPBP2 folds into an α-helix (α7) at pH 6.5. The protein has nanomolar affinity towards both pheromone isomers. Molecular docking of both pheromones, E-12 and Z-12-tetradecenyl acetate, to OfurPBP2 revealed that the residues Met5, Lys6, Met8, Thr9, Phe12, Phe36, Trp37, Phe76, Ser115, Phe118, Lys119, Ile122, His123, and Ala128 interact with both isomers, while Thr9 formed a hydrogen bond with the acetate head group. NMR structure and thermal unfolding studies with CD suggest that ligand release at pH 4.5 is likely due to the partial unfolding of the protein.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Proteínas de Transporte/química , Dissulfetos/metabolismo , Feminino , Proteínas de Insetos/química , Ligantes , Masculino , Simulação de Acoplamento Molecular , Mariposas/química , Mariposas/metabolismo , Feromônios/química , Feromônios/metabolismo , Atrativos Sexuais/metabolismo
3.
J Agric Food Chem ; 69(46): 14013-14023, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34758619

RESUMO

Ostrinia nubilalis, a lepidopteran moth, also known as the European corn borer, has a major impact on the production of economically important crops in the United States and Europe. The female moth invites the male moth for mating through the release of pheromones, a volatile chemical signal. Pheromone binding proteins (PBPs) present in the male moth antennae are believed to pick up the pheromones, transport them across the aqueous sensillum lymph, and deliver them to the olfactory receptor neurons. Here we report for the first time the cloning, expression, refolding, purification, and structural characterization of Ostrinia nubilalis PBP3 (OnubPBP3). The recombinant protein showed nanomolar affinity to each isomer of the Ostrinia pheromones, E- and Z-11-tetradecenyl acetate. In a pH titration study by nuclear magnetic resonance, the protein exhibited an acid-induced unfolding at pH below 5.5. The molecular dynamics simulation study demonstrated ligand-induced conformational changes in the protein with both E- and Z-isomers of the Ostrinia pheromone. The simulation studies showed that while protein flexibility decreases upon binding to E-pheromone, it increases when bound to Z-pheromone. This finding suggests that the OnubPBP3 complex with E-pheromone is more stable than with Z-pheromone.


Assuntos
Proteínas de Transporte/química , Proteínas de Insetos/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Mariposas , Atrativos Sexuais , Animais , Feromônios , Zea mays
4.
Glycobiology ; 31(7): 838-850, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33442744

RESUMO

Asparagine-linked glycosylation, also known as N-linked glycosylation, is an essential and highly conserved co- and post-translational protein modification in eukaryotes and some prokaryotes. In the central step of this reaction, a carbohydrate moiety is transferred from a lipid-linked donor to the side-chain of a consensus asparagine in a nascent protein as it is synthesized at the ribosome. Complete loss of oligosaccharyltransferase (OST) function is lethal in eukaryotes. This reaction is carried out by a membrane-associated multisubunit enzyme, OST, localized in the endoplasmic reticulum. The smallest subunit, Ost4, contains a single membrane-spanning helix that is critical for maintaining the stability and activity of OST. Mutation of any residue from Met18 to Ile24 of Ost4 destabilizes the enzyme complex, affecting its activity. Here, we report solution nuclear magnetic resonance structures and molecular dynamics (MD) simulations of Ost4 and Ost4V23D in micelles. Our studies revealed that while the point mutation did not impact the structure of the protein, it affected its position and solvent exposure in the membrane mimetic environment. Furthermore, our MD simulations of the membrane-bound OST complex containing either WT or V23D mutant demonstrated disruption of most hydrophobic helix-helix interactions between Ost4V23D and transmembrane TM12 and TM13 of Stt3. This disengagement of Ost4V23D from the OST complex led to solvent exposure of the D23 residue in the hydrophobic pocket created by these interactions. Our study not only solves the structures of yeast Ost4 subunit and its mutant but also provides a basis for the destabilization of the OST complex and reduced OST activity.


Assuntos
Hexosiltransferases , Proteínas de Saccharomyces cerevisiae , Hexosiltransferases/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana , Simulação de Dinâmica Molecular , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Biomol NMR Assign ; 14(2): 205-209, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32328881

RESUMO

Asparagine-linked glycosylation is an essential and highly conserved protein modification reaction that occurs in the endoplasmic reticulum of cells during protein synthesis at the ribosome. In the central reaction, a pre-assembled high-mannose sugar is transferred from a lipid-linked donor substrate to the side-chain of an asparagine residue in an -N-X-T/S- sequence (where X is any residue except proline). This reaction is carried by a membrane-bound multi-subunit enzyme complex, oligosaccharyltransferase (OST). In humans, genetic defects in OST lead to a group of rare metabolic diseases collectively known as Congenital Disorders of Glycosylation. Certain mutations are lethal for all organisms. In yeast, the OST is composed of nine non-identical protein subunits. The functional enzyme complex contains eight subunits with either Ost3 or Ost6 at any given time. Ost4, an unusually small protein, plays a very important role in the stabilization of the OST complex. It bridges the catalytic subunit Stt3 with Ost3 (or Ost6) in the Stt3-Ost4-Ost3 (or Ost6) sub-complex. Mutation of any residue from M18-I24 in the trans-membrane helix of yeast Ost4 negatively impacts N-linked glycosylation and the growth of yeast. Indeed, mutation of valine23 to an aspartate impairs OST function in vivo resulting in a lethal phenotype in yeast. To understand the structural mechanism of Ost4 in the stabilization of the enzyme complex, we have initiated a detailed investigation of Ost4 and its functionally important mutant, Ost4V23D. Here, we report the backbone 1H, 13C, and 15N resonance assignments for Ost4 and Ost4V23D in dodecylphosphocholine micelles.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Hexosiltransferases/química , Proteínas de Membrana/química , Proteínas Mutantes/química , Subunidades Proteicas/química , Espectroscopia de Prótons por Ressonância Magnética , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
6.
Biomolecules ; 10(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316603

RESUMO

Asparagine-linked glycosylation, also known as N-linked glycosylation is an essential and highly conserved post-translational protein modification that occurs in all three domains of life. This modification is essential for specific molecular recognition, protein folding, sorting in the endoplasmic reticulum, cell-cell communication, and stability. Defects in N-linked glycosylation results in a class of inherited diseases known as congenital disorders of glycosylation (CDG). N-linked glycosylation occurs in the endoplasmic reticulum (ER) lumen by a membrane associated enzyme complex called the oligosaccharyltransferase (OST). In the central step of this reaction, an oligosaccharide group is transferred from a lipid-linked dolichol pyrophosphate donor to the acceptor substrate, the side chain of a specific asparagine residue of a newly synthesized protein. The prokaryotic OST enzyme consists of a single polypeptide chain, also known as single subunit OST or ssOST. In contrast, the eukaryotic OST is a complex of multiple non-identical subunits. In this review, we will discuss the biochemical and structural characterization of the prokaryotic, yeast, and mammalian OST enzymes. This review explains the most recent high-resolution structures of OST determined thus far and the mechanistic implication of N-linked glycosylation throughout all domains of life. It has been shown that the ssOST enzyme, AglB protein of the archaeon Archaeoglobus fulgidus, and the PglB protein of the bacterium Campylobactor lari are structurally and functionally similar to the catalytic Stt3 subunit of the eukaryotic OST enzyme complex. Yeast OST enzyme complex contains a single Stt3 subunit, whereas the human OST complex is formed with either STT3A or STT3B, two paralogues of Stt3. Both human OST complexes, OST-A (with STT3A) and OST-B (containing STT3B), are involved in the N-linked glycosylation of proteins in the ER. The cryo-EM structures of both human OST-A and OST-B complexes were reported recently. An acceptor peptide and a donor substrate (dolichylphosphate) were observed to be bound to the OST-B complex whereas only dolichylphosphate was bound to the OST-A complex suggesting disparate affinities of two OST complexes for the acceptor substrates. However, we still lack an understanding of the independent role of each eukaryotic OST subunit in N-linked glycosylation or in the stabilization of the enzyme complex. Discerning the role of each subunit through structure and function studies will potentially reveal the mechanistic details of N-linked glycosylation in higher organisms. Thus, getting an insight into the requirement of multiple non-identical subunits in the N-linked glycosylation process in eukaryotes poses an important future goal.


Assuntos
Hexosiltransferases/química , Hexosiltransferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Glicosilação , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
Biomol NMR Assign ; 14(1): 115-118, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975054

RESUMO

Ostrinia furnacalis, a lepidopteran moth, is an invasive pest found in Asia, Australia, Africa, and parts of the United States. The O. furnacalis pheromone-binding protein2 (OfurPBP2), present in the male moth antenna, plays a role in the detection of female-secreted pheromone in a process that leads to mating. To understand the structural mechanism of pheromone binding and release in this pest, we have initiated characterization of OfurPBP2 by solution NMR. Here, we report the backbone resonance assignments and the secondary structural elements of OfurPBP2 at pH 6.5 using uniformly 13C, 15N-labeled protein with various triple resonance NMR experiments. The assignments are 97% completed for backbone and 88% completed for side-chain resonances. The secondary structure of OfurPBP2, based on backbone chemical shifts, consists of eight α-helices, including a well-structured C-terminal helix.


Assuntos
Agricultura , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proteínas de Transporte/química , Proteínas de Insetos/química , Mariposas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Prótons por Ressonância Magnética , Animais , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
8.
Biochemistry ; 58(45): 4530-4542, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31637906

RESUMO

Pheromone-binding protein (PBP) in male moth antennae transports pheromone to the olfactory receptor neuron by undergoing a pH-dependent conformational switch, from PBPB at higher pH to PBPA at lower pH, associated with ligand binding and release, respectively. The characteristic feature of the dramatic protein switch is the pH-dependent reversible coil-helix transition of the C-terminus. In the PBPB conformation at pH >6.0, the C-terminus is exposed to the solvent as a coil while the ligand occupies the hydrophobic pocket. However, in the PBPA conformation at acidic pH, the C-terminus switches to a helix and releases the ligand by outcompeting it for the hydrophobic pocket. In Antheraea polyphemus PBP1 (ApolPBP1), the C-terminus (P129-V142) is composed predominantly of hydrophobic residues except for three strategically located acidic residues: Asp132, Glu137, and Glu141. Here, we report for the first time on the consequences of the mutation of one or more acidic residues in the pH-driven reversible coil-helix transition of the ApolPBP1 C-terminus through biophysical characterization. Mutation of any single acidic residue in the C-terminus to its neutral counterpart destabilizes the helix formation at lower pH; these mutants exist as a mixture of both conformations. However, mutation of the two terminal acidic residues together knocks out the protein switch and adversely affects both ligand binding and release functions. Thus, these mutant proteins remain in the open (PBPB) conformation at all pH levels.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/fisiologia , Feromônios/metabolismo , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Proteínas de Insetos/química , Masculino , Modelos Moleculares , Mariposas/química , Conformação Proteica , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência
9.
Sci Rep ; 8(1): 17105, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459333

RESUMO

Lepidopteran male moths have an extraordinarily sensitive olfactory system that is capable of detecting and responding to minute amounts of female-secreted pheromones over great distances. Pheromone-binding proteins (PBPs) in male antennae ferry the hydrophobic ligand across the aqueous lymph to the olfactory receptor neuron triggering the response. PBPs bind ligands at physiological pH of the lymph and release them at acidic pH near the receptor while undergoing a conformational change. In Anthereae polyphemus PBP1, ligand binding to the hydrophobic pocket and its release is regulated by two biological gates: His70 and His95 at one end of the pocket and C-terminus tail at the other end. Interestingly, in Asian corn borer Ostrinia furnacalis PBP2 (OfurPBP2), critical residues for ligand binding and release are substituted in both biological gates. The impact of these substitutions on the ligand binding and release mechanism in OfurPBP2 is not known. We report here overexpression of soluble OfurPBP2 and structural characterization at high and low pH by circular dichroism (CD) and NMR. Ligand binding and ab initio model development were carried out with fluorescence and small-angle X-ray scattering (SAXS) respectively. OfurPBP2 in solution at pH 6.5 is homogeneous, well-folded and has a compact globular shape.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Feromônios/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Insetos/genética , Modelos Moleculares , Mariposas , Conformação Proteica , Homologia de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...