Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anesthesiology ; 131(2): 344-355, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31107274

RESUMO

BACKGROUND: Nebulized antibiotics may be used to treat ventilator-associated pneumonia. In previous pharmacokinetic studies, lung interstitial space fluid concentrations have never been reported. The aim of the study was to compare intravenous and nebulized tobramycin concentrations in the lung interstitial space fluid, epithelial lining fluid, and plasma in mechanically ventilated sheep with healthy lungs. METHODS: Ten anesthetized and mechanically ventilated healthy ewes underwent surgical insertion of microdialysis catheters in upper and lower lobes of both lungs and the jugular vein. Five ewes were given intravenous tobramycin 400 mg, and five were given nebulized tobramycin 400 mg. Microdialysis samples were collected every 20 min for 8 h. Bronchoalveolar lavage was performed at 1 and 6 h. RESULTS: The peak lung interstitial space fluid concentrations were lower with intravenous tobramycin 20.2 mg/l (interquartile range, 12 mg/l, 26.2 mg/l) versus the nebulized route 48.3 mg/l (interquartile range, 8.7 mg/l, 513 mg/l), P = 0.002. For nebulized tobramycin, the median epithelial lining fluid concentrations were higher than the interstitial space fluid concentrations at 1 h (1,637; interquartile range, 650, 1,781, vs. 16 mg/l, interquartile range, 7, 86, P < 0.001) and 6 h (48, interquartile range, 17, 93, vs. 4 mg/l, interquartile range, 2, 9, P < 0.001). For intravenous tobramycin, the median epithelial lining fluid concentrations were lower than the interstitial space fluid concentrations at 1 h (0.19, interquartile range, 0.11, 0.31, vs. 18.5 mg/l, interquartile range, 9.8, 23.4, P < 0.001) and 6 h (0.34, interquartile range, 0.2, 0.48, vs. 3.2 mg/l, interquartile range, 0.9, 4.4, P < 0.001). CONCLUSIONS: Compared with intravenous tobramycin, nebulized tobramycin achieved higher lung interstitial fluid and epithelial lining fluid concentrations without increasing systemic concentrations.


Assuntos
Antibacterianos/farmacocinética , Respiração Artificial , Tobramicina/farmacocinética , Administração por Inalação , Administração Intravenosa , Animais , Antibacterianos/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Modelos Animais , Nebulizadores e Vaporizadores , Ovinos , Tobramicina/administração & dosagem
2.
Intensive Care Med Exp ; 6(1): 17, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29998357

RESUMO

BACKGROUND: Nebulised antibiotics are frequently used for the prevention or treatment of ventilator-associated pneumonia. Many factors may influence pulmonary drug concentrations with inaccurate dosing schedules potentially leading to therapeutic failure and/or the emergence of antibiotic resistance. We describe a research pathway for studying the pharmacokinetics of a nebulised antibiotic during mechanical ventilation using in vitro methods and ovine models, using tobramycin as the study antibiotic. METHODS: In vitro studies using a laser diffractometer and a bacterial-viral filter were used to measure the effect of the type and size of tracheal tubes and antibiotic concentration on the particle size distribution of the tobramycin 400 mg (4 ml; 100 mg/ml) and 160 mg (4 ml, 40 mg/ml) aerosol and nebulised mass delivered. To compare the regional drug distribution in the lung of two routes (intravenous and nebulised) of drug administration of tobramycin 400 mg, technetium-99m-labelled tobramycin 400 mg with planar nuclear medicine imaging was used in a mechanically ventilated ovine model. To measure tobramycin concentrations by intravenous and nebulised tobramycin 400 mg (4 ml, 100 mg/ml) administration in the lung interstitial space (ISF) fluid and blood of mechanically ventilated sheep, the microdialysis technique was used over an 8-h duration. RESULTS: Tobramycin 100 mg/ml achieved a higher lung dose (121.3 mg) compared to 40 mg/ml (41.3 mg) solution. The imaging study with labelled tobramycin indicated that nebulised tobramycin distributed more extensively into each lung zone of the mechanically ventilated sheep than intravenous administration. A higher lung ISF peak concentration of tobramycin was observed with nebulised tobramycin (40.8 mg/l) compared to intravenous route (19.0 mg/l). CONCLUSIONS: The research methods appear promising to describe lung pharmacokinetics for formulations intended for nebulisation during mechanical ventilation. These methods need further validation in an experimental pneumonia model to be able to contribute toward optimising dosing regimens to inform clinical trials and/or clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...