Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Curr Rheumatol Rev ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38808723

RESUMO

This comprehensive exploration delves into the multifaceted attributes of quercetin, a flavonoid with extensive health-promoting potential. The review navigates through its fundamental properties, encompassing its chemical structure, classification as a flavonoid, and its natural prevalence in various sources. Addressing solubility, stability, and bioavailability challenges, the investigation delves into innovative isolation techniques, including solvent extraction, solid-phase extraction, natural deep eutectic solvents, supercritical fluid extraction, microwave-assisted extraction, column chromatography, and high-performance thin-layer chromatography. Transitioning into pharmacological implications, the study unveils quercetin's roles in anti-inflammatory pathways, antioxidant effects, and immune modulation, reflecting its versatile significance in health management. The review highlights its impact on wound healing processes and its potential to mitigate arthritis, elucidating its holistic contributions. Culminating in an exploration of recent studies, the analysis underscores quercetin's remarkable anti-inflammatory and anti-arthritis activities, reflecting its substantial potential across various ailments. The review concludes by projecting future trajectories, emphasizing prospects for an advanced understanding of quercetin's mechanisms, sustainable extraction techniques, clinical integration, and exploration of synergistic combinations. Collectively, this review investigation underscores quercetin's dynamic role at the intersection of natural compounds and medicinal applications, offering profound implications for well- being and health enhancement.

2.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593125

RESUMO

Inflammation in ulcerative colitis is typically restricted to the mucosal layer of distal gut. Disrupted mucus barrier, coupled with microbial dysbiosis, has been reported to occur prior to the onset of inflammation. Here, we show the involvement of vesicular trafficking protein Rab7 in regulating the colonic mucus system. We identified a lowered Rab7 expression in goblet cells of colon during human and murine colitis. In vivo Rab7 knocked down mice (Rab7KD) displayed a compromised mucus layer, increased microbial permeability, and depleted gut microbiota with enhanced susceptibility to dextran sodium-sulfate induced colitis. These abnormalities emerged owing to altered mucus composition, as revealed by mucus proteomics, with increased expression of mucin protease chloride channel accessory 1 (CLCA1). Mechanistically, Rab7 maintained optimal CLCA1 levels by controlling its lysosomal degradation, a process that was dysregulated during colitis. Overall, our work establishes a role for Rab7-dependent control of CLCA1 secretion required for maintaining mucosal homeostasis.


Assuntos
Colite , Células Caliciformes , Animais , Humanos , Camundongos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Modelos Animais de Doenças , Células Caliciformes/metabolismo , Homeostase , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL
3.
Curr Rheumatol Rev ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591212

RESUMO

Arthritis is a chronic inflammatory condition that affects millions of individuals worldwide. The conventional treatment options for arthritis often come with limitations and potential side effects, leading to increased interest in herbal plants as alternative therapies. This article provides a comprehensive overview of the use of herbal plants in arthritis treatment, focusing on their traditional remedies, active components, mechanisms of action, and pharmaceutical approaches for enhancing their delivery. Various herbal plants, including turmeric, ginger, Boswellia, and willow bark, have shown anti-inflammatory and analgesic properties, making them valuable options for managing arthritis symptoms. The active components of these herbal plants, such as curcumin, gingerols, and boswellic acids, contribute to their therapeutic effects. To enhance the delivery of herbal medicines, pharmaceutical approaches like nanoparticle-based drug delivery systems, liposomes, polymeric nanoparticles, nanoemulsions, microneedles, and inhalation systems have been explored. These approaches aim to improve bioavailability, targeted delivery, and controlled release of herbal compounds. Safety considerations, including potential interactions with medications and the risk of allergic reactions, are also discussed. Future perspectives for this field involve conducting well-designed clinical studies, enhancing standardization and quality control measures, exploring novel drug delivery systems, and fostering collaborations between traditional medicine practitioners and healthcare professionals. Continued research and development in these areas will help unlock the full potential of herbal plants in arthritis treatment, offering personalized and effective care for affected individuals.

4.
Sci Rep ; 13(1): 12733, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543667

RESUMO

Many drugs were recommended as antiviral agents for infection control and effective therapy to reduce the mortality rate for COVID-19 patients. Hydroxychloroquine (HCQ), an antimalarial drug, has been controversially recommended for prophylactic use in many countries, including India, to control SARS-CoV-2 infections. We have explored the effect of prophylactic HCQ from the cells of bronchoalveolar lavage fluids from COVID-19-induced acute respiratory distress syndrome patients to determine the level of infection and ultrastructural alterations in the ciliated epithelium, type II pneumocytes, alveolar macrophages, neutrophils, and enucleated granulocytes. Ultrastructural investigation of ciliated epithelium and type II pneumocytes showed lesser infections and cellular impairment in the prophylactic HCQ+ group than HCQ- group. However, macrophages and neutrophils displayed similar infection and ultrastructural alterations in both patient groups. The enucleated fragments of granulocytes showed phagocytosis of the matured virus in HCQ+ groups. The present report unveils the ultrastructural proof to complement the paradox regarding the role of prophylactic HCQ in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Hidroxicloroquina/efeitos adversos , SARS-CoV-2 , Líquido da Lavagem Broncoalveolar , Tratamento Farmacológico da COVID-19 , Antivirais/efeitos adversos
5.
Complement Ther Med ; 76: 102966, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37482107

RESUMO

BACKGROUND: Ayurveda interventions have been used for prophylaxis and care during the COVID-19 pandemic in India and have shown promising results in promoting early clinical recovery from COVID-19. OBJECTIVE: To assess the efficacy and safety of Ashwagandha [Withania somnifera (L.) Dunal] tablet and Shunthi (Zingiber officinale Roscoe) capsule in mild and moderate COVID-19 compared to conventional standard care. METHODS: A randomized controlled exploratory trial was conducted at a designated COVID-19 care center in India with 60 participants having mild or moderate COVID-19. Ashwagandha, two tablets (250 mg each), and Shunthi, two capsules (500 mg each) twice daily for 15 days, were given orally to the participants in the Ayurveda group (AG) and the control group (CG) received conventional standard care. The outcome measures included clinical recovery rate, the proportion of participants with negative RT-PCR assay for COVID-19 on day 7 and day 15, mean time to attain clinical recovery, change in pro-inflammatory markers, serum IgG for COVID-19, HRCT chest findings, disease progression and incidence of adverse events (AE). RESULTS: A total of 60 participants were enrolled, and the data of 48 participants (AG = 25 and CG = 23) were considered for the statistical analysis. The mean time for clinical recovery was reduced by almost 50 % in the AG (6.9 days) compared to CG (13.0 days) (p < 0.001). The proportion of participants who attained viral clearance in AG was 76.0 % compared to 60.8 % in the CG (RR= 1.24, 95 % CI: 0.841, 1.851, p-value = 0.270). Changes in the pro-inflammatory markers, serum IgG for COVID-19, and HRCT chest findings were comparable in both groups, and no AE or disease progression was reported. CONCLUSIONS: The Ayurveda interventions, Ashwagandha and Shunthi, can effectively reduce the duration of clinical recovery and improve time for viral clearance in mild and moderate COVID-19. These interventions were observed to be safe and well-tolerated during the duration of the trial. TRIAL REGISTRATION: Clinical Trial Registry of India - CTRI/2020/08/027224.


Assuntos
COVID-19 , Withania , Zingiber officinale , Humanos , Pandemias/prevenção & controle , Biomarcadores , Imunoglobulina G , Resultado do Tratamento
6.
Virol J ; 20(1): 97, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208729

RESUMO

BACKGROUND: SARS-CoV-2 was reported to induce cell fusions to form multinuclear syncytia that might facilitate viral replication, dissemination, immune evasion, and inflammatory responses. In this study, we have reported the types of cells involved in syncytia formation at different stages of COVID-19 disease through electron microscopy. METHODS: Bronchoalveolar fluids from the mild (n = 8, SpO2 > 95%, no hypoxia, within 2-8 days of infection), moderate (n = 8, SpO2 90% to ≤ 93% on room air, respiratory rate ≥ 24/min, breathlessness, within 9-16 days of infection), and severe (n = 8, SpO2 < 90%, respiratory rate > 30/min, external oxygen support, after 17th days of infection) COVID-19 patients were examined by PAP (cell type identification), immunofluorescence (for the level of viral infection), scanning (SEM), and transmission (TEM) electron microscopy to identify the syncytia. RESULTS: Immunofluorescence studies (S protein-specific antibodies) from each syncytium indicate a very high infection level. We could not find any syncytial cells in mildly infected patients. However, identical (neutrophils or type 2 pneumocytes) and heterotypic (neutrophils-monocytes) plasma membrane initial fusion (indicating initiation of fusion) was observed under TEM in moderately infected patients. Fully matured large-size (20-100 µm) syncytial cells were found in severe acute respiratory distress syndrome (ARDS-like) patients of neutrophils, monocytes, and macrophage origin under SEM. CONCLUSIONS: This ultrastructural study on the syncytial cells from COVID-19 patients sheds light on the disease's stages and types of cells involved in the syncytia formations. Syncytia formation was first induced in type II pneumocytes by homotypic fusion and later with haematopoetic cells (monocyte and neutrophils) by heterotypic fusion in the moderate stage (9-16 days) of the disease. Matured syncytia were reported in the late phase of the disease and formed large giant cells of 20 to 100 µm.


Assuntos
COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Microscopia Eletrônica , Células Epiteliais Alveolares , Macrófagos , Células Gigantes
7.
Pain Pract ; 23(6): 647-663, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37070657

RESUMO

OBJECTIVE: People from minority ethnicities often have a greater impact of chronic pain, are underrepresented at pain services, and may not benefit from treatment to the same extent as dominant cultures. The aim of this study was to review Indian and Chinese cultural views of pain and pain management, as a basis for improving management of chronic pain in migrant populations from these ethnicities. METHODS: A systematic review of qualitative studies addressing pain beliefs and experiences involving Indian and Chinese participants was conducted. Thematic synthesis was used to identify themes across the studies, and the quality of the articles was appraised. RESULTS: Twenty-six articles were included, most of which were appraised as high quality. Five themes were identified: Making meaning of pain described the holistic interpretation of the meaning of pain; Pain is disabling and distressing described the marked physical, psychological, and spiritual impact of pain; Pain should be endured described the cultural expectation to suppress responses to pain and not be a burden; Pain brings strength and spiritual growth described the enrichment and empowerment some people experienced through living with pain, and Management of pain goes beyond a traditional or Western approach described the factors that guided people in their use of healthcare. DISCUSSION: The review identified a holistic interpretation and impact of pain in Indian and Chinese populations, with pain management guided by multiple factors that transcended a single cultural framework. Several strength-based management strategies are recommended based on preferences for traditional treatments and respect for Western healthcare.


Assuntos
Dor Crônica , Manejo da Dor , Humanos , Dor Crônica/terapia , População do Leste Asiático , Povo Asiático , Pesquisa Qualitativa
8.
Front Neurol ; 13: 942349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530624

RESUMO

Background: Dizziness and imbalance are common following traumatic brain injury (TBI). While these symptoms are often attributed to vestibular dysfunction, the relative contribution of peripheral vs. central mechanisms is unclear. This study investigated the prevalence of semicircular canal and otolith abnormalities in a cohort of patients with chronic TBI and symptoms of dizziness or imbalance. The relationship between vestibular, oculomotor and posturography results was further explored. Methods: Clinical records of patients attending the New Zealand Dizziness and Balance Centre from January 2015 to December 2019 were reviewed for consideration in the study. Inclusion required: an age of 18-80 years, a diagnosed TBI, and vestibular assessment using three-dimensional video head impulses (vHIT), cervical and ocular vestibular-evoked myogenic potentials (c and o VEMPs, respectively) and caloric testing. Severe TBI, pre-existing vestibular diagnoses, and incomplete test results were excluded. Rates of abnormalities were determined for each test and compared with results of oculomotor function testing and postural control, measured using the sensory organization test (SOT). Results: Of 158 reviewed records, 99 patients aged 49 ± 15 years (59 female) fulfilled criteria for inclusion in the study. The median time between the head injury and the clinical assessment was 12 (IQR 6-21) months. Abnormalities involving one or more components of the vestibular labyrinth and/or nerve divisions were identified in 33 of 99 patients (33.3%). The horizontal semicircular canal was most frequently affected (18.2%), followed by the saccule (14.1%), utricle (8.1%), posterior (7.1%) and anterior (2.0%) semicircular canals. Vestibular test abnormalities were associated with skull-base fractures, superior canal dehiscence, and focal ear trauma. Oculomotor dysfunction and postural instability were recorded in 41.1 and 75.5% of patients, respectively. Postural instability correlated with abnormal oculomotor function (p = 0.008) but not peripheral vestibular hypofunction (p = 0.336). Conclusions: Dizziness and/or imbalance in chronic TBI was associated with impaired postural stability for tasks requiring high levels of use of vestibular and visual input for balance. Vestibular hypofunction identified through vHIT, VEMP and caloric testing was recorded but was less common, except when the injury involved a fractured skull-base. There was no specific pattern of end-organ or nerve involvement which characterized this group of patients.

9.
Front Plant Sci ; 13: 1042999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507460

RESUMO

The rising temperatures are seriously impacting the food crops, including urdbean; hence efforts are needed to identify the sources of heat tolerance in such crops to ensure global food security. In the present study, urdbean genotypes were evaluated for heat tolerance under natural outdoor for two consecutive years (2018, 2019) and subsequently in the controlled environment of the growth chamber to identify high temperature tolerant lines. The genotypes were assessed involving few physiological traits (membrane damage, chlorophyll, photosynthetic efficiency, stomatal conductance, lipid peroxidation), reproductive traits (pollen germination % and pollen viability %) and yield related traits (total number of pods plant-1, total seeds plant-1, single seed weight and seed yield plant-1). Based upon these tested traits, PantU31, Mash114, UTTARA and IPU18-04 genotypes were identified as promising genotypes for both years under heat stress condition. Further confirming heat tolerance, all these four tolerant and four sensitive genotypes were tested under controlled environment under growth chamber condition. All these four genotypes PantU31, Mash114, UTTARA and IPU18-04 showed high chlorophyll content, photosynthetic efficiency, stomatal conductance, leaf area, pods plant-1, total seeds plant-1 and low reduction in pollen germination % and pollen viability under stress heat stress condition. Moreover, yield and yield related traits viz., pods plant-1, seeds plant-1, single seed weight and seed yield plant-1 showed very strong positive correlation with pollen germination and pollen viability except electrolyte leakage and malondialdehyde content. Thus, these genotypes could be potentially used as donors for transferring heat tolerance trait to the elite yet heat-sensitive urdbean cultivars.

10.
Microsc Microanal ; : 1-25, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36065953

RESUMO

In this study, we examined the cellular infectivity and ultrastructural changes due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the various cells of bronchoalveolar fluid (BALF) from intubated patients of different age groups (≥60 years and <60 years) and with common comorbidities such as diabetes, liver and kidney diseases, and malignancies. BALF of 79 patients (38 cases >60 and 41 cases <60 years) were studied by light microscopy, immunofluorescence, scanning, and transmission electron microscopy to evaluate the ultrastructural changes in the ciliated epithelium, type II pneumocytes, macrophages, neutrophils, eosinophils, lymphocytes, and anucleated granulocytes. This study demonstrated relatively a greater infection and better preservation of subcellular structures in these cells from BALF of younger patients (<60 years compared with the older patients (≥60 years). The different cells of BALF from the patients without comorbidities showed higher viral load compared with the patients with comorbidities. Diabetic patients showed maximum ultrastructural damage in BALF cells in the comorbid group. This study highlights the comparative effect of SARS-CoV-2 infection on the different airway and inflammatory cells of BALF at the subcellular levels among older and younger patients and in patients with comorbid conditions.

11.
Front Hum Neurosci ; 16: 945953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034112

RESUMO

Background: The triangle completion test has been used to assess egocentric wayfinding for decades, yet there is little information on its reliability. We developed a virtual reality (VR) based test and investigated whether either test of spatial navigation was reliable. Objective: To examine test-retest reliability of the real-world and VR triangle completion tests. A secondary objective was to examine the usability of the VR based test. Materials and methods: Thirty healthy adults aged 18-45 years were recruited to this block randomized study. Participants completed two sessions of triangle completion tests in the real-world and VR on the same day with a break between sessions. Results: In both test versions distance from the endpoint and angle of deviation showed poor test-retest reliability (r < 0.5). Distance traveled had moderate reliability in both the real-world and VR tests (r = 0.55 95% CI [0.23, 0.76]; r = 0.66 95% CI [0.4, 0.83, respectively]). The VR triangle test showed poor correlation with the real-world test. Conclusion: The triangle completion test has poor test-retest reliability and demonstrates poor concurrent validity between the real-world and VR. Nevertheless, it was feasible to translate a real-world test of spatial navigation into VR. VR provides opportunities for development of clinically relevant spatial navigation tests in the future.

12.
Front Plant Sci ; 13: 878498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837452

RESUMO

Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity and form an important part of the healthy diet of the human being. Besides providing basic nutrition, they have great potential for boosting human health. The balanced consumption of vegetables is highly recommended for supplementing the human body with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds. However, the production and quality of fresh vegetables are influenced directly or indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits and harvestable yield are the most common effects of HS among vegetable crops. Heat-induced morphological damage, such as poor vegetative growth, leaf tip burning, and rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion, and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation unprofitable. Further studies to trace down the possible physiological and biochemical effects associated with crop failure reveal that the key factors include membrane damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues, which may be the key factors governing heat-induced crop failure. The reproductive stage of plants has extensively been studied for HS-induced abnormalities. Plant reproduction is more sensitive to HS than the vegetative stages, and affects various reproductive processes like pollen germination, pollen load, pollen tube growth, stigma receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound and robust adaptation and mitigation strategies are needed to overcome the adverse impacts of HS at the morphological, physiological, and biochemical levels to ensure the productivity and quality of vegetable crops. Physiological traits such as the stay-green trait, canopy temperature depression, cell membrane thermostability, chlorophyll fluorescence, relative water content, increased reproductive fertility, fruit numbers, and fruit size are important for developing better yielding heat-tolerant varieties/cultivars. Moreover, various molecular approaches such as omics, molecular breeding, and transgenics, have been proved to be useful in enhancing/incorporating tolerance and can be potential tools for developing heat-tolerant varieties/cultivars. Further, these approaches will provide insights into the physiological and molecular mechanisms that govern thermotolerance and pave the way for engineering "designer" vegetable crops for better health and nutritional security. Besides these approaches, agronomic methods are also important for adaptation, escape and mitigation of HS protect and improve yields.

13.
Front Hum Neurosci ; 16: 697739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210998

RESUMO

The visual system is a source of sensory information that perceives environmental stimuli and interacts with other sensory systems to generate visual and postural responses to maintain postural stability. Although the three sensory systems; the visual, vestibular, and somatosensory systems work concurrently to maintain postural control, the visual and vestibular system interaction is vital to differentiate self-motion from external motion to maintain postural stability. The visual system influences postural control playing a key role in perceiving information required for this differentiation. The visual system's main afferent information consists of optic flow and retinal slip that lead to the generation of visual and postural responses. Visual fixations generated by the visual system interact with the afferent information and the vestibular system to maintain visual and postural stability. This review synthesizes the roles of the visual system and their interaction with the vestibular system, to maintain postural stability.

14.
Complement Ther Med ; 66: 102814, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35149205

RESUMO

OBJECTIVE: To determine the therapeutic efficacy and safety of AYUSH-64 as an add-on to standard care in mild to moderate COVID-19. DESIGN SETTING, AND INTERVENTIONS: This open-label randomized controlled parallel-group trial was conducted at a designated COVID care centre in India in 80 patients diagnosed with mild to moderate COVID-19 and randomized into two groups. Participants in the AYUSH-64 add-on group (AG) received AYUSH-64 two tablets (500 mg each) three times a day for 30 days along with standard conventional care. The control group (CG) received standard care alone. MAIN OUTCOME MEASURES: Proportion of participants who attained clinical recovery on day 7, 15, 23 and 30, proportion of participants with negative RT-PCR assay for COVID-19 at each weekly time point, change in pro-inflammatory markers, metabolic functions, HRCT chest (CO-RADS category) and incidence of Adverse Drug Reaction (ADR)/Adverse Event (AE). RESULTS: Out of 80 participants, 74 (37 in each group) contributed to the final analysis. Significant difference was observed in clinical recovery in the AG (p < 0.001 ) compared to CG. Mean duration for clinical recovery in AG (5.8 ± 2.67 days) was significantly less compared to CG (10.0 ± 4.06 days). Significant improvement in HRCT chest was observed in AG (p = 0.031) unlike in CG (p = 0.210). No ADR/SAE was observed or reported in AG. CONCLUSIONS: AYUSH-64 as adjunct to standard care is safe and effective in hastening clinical recovery in mild to moderate COVID-19. The efficacy may be further validated by larger multi-center double-blind trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Método Duplo-Cego , Humanos , Índia , Extratos Vegetais , SARS-CoV-2 , Resultado do Tratamento
15.
Gait Posture ; 93: 153-159, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35168053

RESUMO

BACKGROUND: Visually induced dizziness can develop as a sequala of a vestibular disorder and is characterized by symptoms of nausea, dizziness, and imbalance in rich visual environments such as supermarkets and shopping malls. To date the mechanisms underlying visually induced dizziness are poorly understood. RESEARCH QUESTION: What are the characteristics of visual fixations and postural sway in adults with visually induced dizziness compared to healthy adults when exposed to increasingly complex visual environments? METHODS: We recruited 20 adults with visually induced dizziness and 20 healthy adults to this cross-sectional exploratory study. Participants were instructed to maintain gaze on letters projected on a large screen with backgrounds of differing visual complexity. The number of visual refixations, movement of the centre of pressure, and movement of the head and body centres of mass were recorded. RESULTS: Adults with visually induced dizziness showed a significantly higher number of visual refixations (F= 10.592, p < 0.01), and increased mean velocity of head and body centres of mass movement (F= 14.034, p < 0.01 and F= 6.553, p < 0.05 respectively) compared to healthy adults. SIGNIFICANCE: Adults with visually induced dizziness exhibited visual fixational instability and increased postural and head sway compared to healthy adults. This was mainly observed in conditions with complex and moving backgrounds. This may account for reports from adults with visually induced dizziness of worsening symptoms in busy environments. The results from the study may assist in guiding intervention development to reduce symptoms of visually induced dizziness.


Assuntos
Tontura , Doenças Vestibulares , Adulto , Estudos Transversais , Tontura/etiologia , Humanos , Equilíbrio Postural , Vertigem , Doenças Vestibulares/complicações
16.
Artigo em Inglês | MEDLINE | ID: mdl-35005036

RESUMO

BACKGROUND: Evolution in the in vitro cell culture from conventional 2D to 3D technique has been a significant accomplishment. The 3D culture models have provided a close and better insight into the physiological study of the human body. The increasing demand for organs like liver, kidney, and pancreas for transplantation, rapid anti-cancer drug screening, and the limitations associated with the use of animal models have attracted the interest of researchers to explore 3D organ culture. MAIN BODY: Natural, synthetic, and hybrid material-based hydrogels are being used as scaffolds in 3D culture and provide 'close-to-in vivo' structures. Organoids: the stem cell-derived small size 3D culture systems are now favored due to their ability to mimic the in-vivo conditions of organ or tissue and this characteristic has made it eligible for a variety of clinical applications, drug discovery and regenerative medicine are a few of the many areas of application. The use of animal models for clinical applications has been a long-time ethical and biological challenge to get accurate outcomes. 3D bioprinting has resolved the issue of vascularization in organoid culture to a great extent by its layer-by-layer construction approach. The 3D bioprinted organoids have a popular application in personalized disease modeling and rapid drug development and therapeutics. SHORT CONCLUSIONS: This review paper, focuses on discussing the novel organoid culture approach, its advantages and limitations, and potential applications in a variety of life science areas namely cancer research, cell therapy, tissue engineering, and personalized medicine and drug discovery.

17.
Plant Cell Rep ; 41(3): 699-739, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34223931

RESUMO

Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.


Assuntos
Secas , Termotolerância , Clorofila/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteômica , Espécies Reativas de Oxigênio , Estresse Fisiológico , Termotolerância/genética
18.
Front Plant Sci ; 11: 587264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193540

RESUMO

Rising global temperatures due to climate change are affecting crop performance in several regions of the world. High temperatures affect plants at various organizational levels, primarily accelerating phenology to limit biomass production and shortening reproductive phase to curtail flower and fruit numbers, thus resulting in severe yield losses. Besides, heat stress also disrupts normal growth, development, cellular metabolism, and gene expression, which alters shoot and root structures, branching patterns, leaf surface and orientation, and anatomical, structural, and functional aspects of leaves and flowers. The reproductive growth stage is crucial in plants' life cycle, and susceptible to high temperatures, as reproductive processes are negatively impacted thus reducing crop yield. Genetic variation exists among genotypes of various crops to resist impacts of heat stress. Several screening studies have successfully phenotyped large populations of various crops to distinguish heat-tolerant and heat-sensitive genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods, spikes, spikelets), and seeds (or grains), which have led to direct release of heat-tolerant cultivars in some cases (such as chickpea). In the present review, we discuss examples of contrasting genotypes for heat tolerance in different crops, involving many traits related to thermotolerance in leaves (membrane thermostability, photosynthetic efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules (antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins), and "omics" (phenomics, transcriptomics, genomics) approaches. The traits linked to heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of crops to enhance their thermotolerance. Involving these traits will be useful for screening contrasting genotypes and would pave the way for characterizing the underlying molecular mechanisms, which could be valuable for engineering plants with enhanced thermotolerance. Wherever possible, we discussed breeding and biotechnological approaches for using these traits to develop heat-tolerant genotypes of various food crops.

19.
JMIR Res Protoc ; 9(7): e16805, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716003

RESUMO

BACKGROUND: Motion sensitivity after vestibular disorders is associated with symptoms of nausea, dizziness, and imbalance in busy environments. Dizziness and imbalance are reported in places such as supermarkets and shopping malls which have unstable visual backgrounds; however, the mechanism of motion sensitivity is poorly understood. OBJECTIVE: The main aim of this exploratory observational study is to investigate visual fixations and postural sway in response to increasingly complex visual environments in healthy adults and adults with motion sensitivity. METHODS: A total of 20 healthy adults and 20 adults with motion sensitivity will be recruited for this study. Visual fixations, postural sway, and body kinematics will be measured with a mobile eye tracker device, force plate, and 3D motion capture system, respectively. Participants will be exposed to experimental tasks requiring visual fixation on letters, projected on a range of backgrounds on a large screen during quiet stance. Descriptive statistics (mean and standard deviation) will be calculated for each of the variables. One-way independent-measures analyses of variance will be performed to investigate the differences between groups for all variables. RESULTS: Data collection was started in May 2019 and was completed by February 2020. It was approved by Health and Disability Ethics Committees, Ministry of Health, New Zealand on November 2, 2018 (Ethics ref: 18/CEN/193). We are currently processing the data and will begin data analysis in July 2020. We expect the results to be available for publication by the end of 2020. The trial was funded by the Neurology Special Interest Group, Physiotherapy New Zealand, and the Eisdell Moore Centre in November 2018. CONCLUSIONS: This study will provide a detailed investigation of visual fixations in response to increasingly complex visual environments. Investigating characteristics of visual fixations in healthy adults and those with motion sensitivity will provide insight into this disabling condition and may inform the development of new intervention strategies which explicitly cater to the needs of this population. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12619000254190; https://tinyurl.com/yxbn7nks. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/16805.

20.
J Exp Bot ; 71(2): 569-594, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328236

RESUMO

Among various abiotic stresses, heat stress is one of the most damaging, threatening plant productivity and survival all over the world. Warmer temperatures due to climatic anomalies above optimum growing temperatures have detrimental impacts on crop yield potential as well as plant distribution patterns. Heat stress affects overall plant metabolism in terms of physiology, biochemistry, and gene expression. Membrane damage, protein degradation, enzyme inactivation, and the accumulation of reactive oxygen species are some of the harmful effects of heat stress that cause injury to various cellular compartments. Although plants are equipped with various defense strategies to counteract these adversities, their defensive means are not sufficient to defend against the ever-rising temperatures. Hence, substantial yield losses have been observed in all crop species under heat stress. Here, we describe the involvement of various plant growth-regulators (PGRs) (hormones, polyamines, osmoprotectants, antioxidants, and other signaling molecules) in thermotolerance, through diverse cellular mechanisms that protect cells under heat stress. Several studies involving the exogenous application of PGRs to heat-stressed plants have demonstrated their role in imparting tolerance, suggesting the strong potential of these molecules in improving the performance of food crops grown under high temperature.


Assuntos
Produtos Agrícolas/fisiologia , Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas/fisiologia , Termotolerância , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...