Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687822

RESUMO

A vision of 6G aims to automate versatile services by eliminating the complexity of human effort for Industry 5.0 applications. This results in an intelligent environment with cognitive and collaborative capabilities of AI conversational orchestration that enable a variety of applications across smart Autonomous Vehicle (AV) networks. In this article, an innovative framework for AI conversational orchestration is proposed by enabling on-the-fly virtual infrastructure service orchestration for Anything-as-a-Service (XaaS) to automate a network service paradigm. The proposed framework will potentially contribute to the growth of 6G conversational orchestration by enabling on-the-fly automation of cloud and network services. The orchestration aspect of the 6G vision is not limited to cognitive collaborative communications, but also extends to context-aware personalized infrastructure for 6G automation. The experimental results of the implemented proof-of-concept framework are presented. These experiments not only affirm the technical capabilities of this framework, but also push into several Industry 5.0 applications.

2.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447666

RESUMO

The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic situation. Deploying and managing a static RSU (sRSU) requires considerable capital and operating expenditures (CAPEX and OPEX), leading to RSUs that are sparsely distributed, continuous handovers amongst RSUs, and, more importantly, frequent RSU interruptions. At present, researchers remain focused on multiple parameters in the sRSU to improve the vehicle-to-infrastructure (V2I) communication; however, in this research, the mobile RSU (mRSU), an emerging concept for sixth-generation (6G) edge computing vehicular ad hoc networks (VANETs), is proposed to improve the connectivity and efficiency of communication among V2I. In addition to this, the mRSU can serve as a computing resource for edge computing applications. This paper proposes a novel energy-efficient reservation technique for edge computing in 6G VANETs that provides an energy-efficient, reservation-based, cost-effective solution by introducing the concept of the mRSU. The simulation outcomes demonstrate that the mRSU exhibits superior performance compared to the sRSU in multiple aspects. The mRSU surpasses the sRSU with a packet delivery ratio improvement of 7.7%, a throughput increase of 5.1%, a reduction in end-to-end delay by 4.4%, and a decrease in hop count by 8.7%. The results are generated across diverse propagation models, employing realistic urban scenarios with varying packet sizes and numbers of vehicles. However, it is important to note that the enhanced performance parameters and improved connectivity with more nodes lead to a significant increase in energy consumption by 2%.


Assuntos
Comunicação , Unidades Móveis de Saúde , Humanos , Simulação por Computador , Fenômenos Físicos , Pesquisadores
3.
Heliyon ; 8(12): e12516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36619420

RESUMO

The FSO communication system offers high data rate investigated over the last few decades because of extraordinary advantages like unlicensed frequency and bandwidth at low power consumption, simple design, hasty, and minimal installation cost, including no right of way. It is essential to investigate solutions against degrading factors like absorption and scattering caused by fog, dust, rain, smog, and uncertain temperature variation of environmental channels. In this work various modulation techniques (AM, CS-NRZ, CS-RZ, DB-NRZ, MDB-NRZ, MDB-RZ, RZ, NRZ) are simulated and used to mitigate the weather attenuation of the specific airfield of Lahore, Pakistan under fog conditions, to provide a reliable FSO communication link for high data rate up to 40 Gbps over a link distance from 1.2 to 1.8 km at transmitted power up to 34 dBm in congested region. The real-time visibility data was taken metrological department for the estimation of attenuation under fog conditions and simulated using Optisys software for further investigation. To choose an FSO communication link, analysis for data rate, link distance, SNR, BER and Q-factor are performed under fog conditions using eight different modulation techniques. An increase in signal channel loss has been observed under fog conditions and performance of the FSO communication system is degraded consequently. The 3 R's (range, rate, and reliability) depend on each other if the link range is tarnished in a foggy condition that will also degrade the data rate and subsequently, reliability of the FSO system. It is observed that for maximum link distance, the performance parameters of AM modulation technique are prominent and more efficient, offering better Q-factor value at 6.08 dB, lower bit error rate at 7.03 × 10-10, and better SNR of 4.29 dB. The results also show that AM modulation technique offers better signal-to-noise power and has good SNR due to well-received signal power as compared to all other modulation techniques. This research will be helpful to design and implement an FSO communication system under foggy conditions in a metropolitan city to provide a high data communication link among different national institutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...