Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(3): 103143, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38900633

RESUMO

In rats, cannulation of the jugular vein and the carotid artery precedes the use of the hyperinsulinemic euglycemic clamp to determine insulin sensitivity in vivo. Here, we present a vascular surgery protocol to allow the infusion of substances via the vein and the collection of blood samples from the artery on the day of the hyperinsulinemic euglycemic clamp. We describe steps for preparing for and performing catheterization surgery. We then detail procedures for clamp preparation and its use. For complete details on the use and execution of this protocol, please refer to Pereira et al.1,2,3.

3.
Int J Surg ; 109(12): 4298-4308, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800594

RESUMO

BACKGROUND: Diagnosing pancreatic lesions, including chronic pancreatitis, autoimmune pancreatitis, and pancreatic cancer, poses a challenge and, as a result, is time-consuming. To tackle this issue, artificial intelligence (AI) has been increasingly utilized over the years. AI can analyze large data sets with heightened accuracy, reduce interobserver variability, and can standardize the interpretation of radiologic and histopathologic lesions. Therefore, this study aims to review the use of AI in the detection and differentiation of pancreatic space-occupying lesions and to compare AI-assisted endoscopic ultrasound (EUS) with conventional EUS in terms of their detection capabilities. METHODS: Literature searches were conducted through PubMed/Medline, SCOPUS, and Embase to identify studies eligible for inclusion. Original articles, including observational studies, randomized control trials, systematic reviews, meta-analyses, and case series specifically focused on AI-assisted EUS in adults, were included. Data were extracted and pooled, and a meta-analysis was conducted using Meta-xl. For results exhibiting significant heterogeneity, a random-effects model was employed; otherwise, a fixed-effects model was utilized. RESULTS: A total of 21 studies were included in the review with four studies pooled for a meta-analysis. A pooled accuracy of 93.6% (CI 90.4-96.8%) was found using the random-effects model on four studies that showed significant heterogeneity ( P <0.05) in the Cochrane's Q test. Further, a pooled sensitivity of 93.9% (CI 92.4-95.3%) was found using a fixed-effects model on seven studies that showed no significant heterogeneity in the Cochrane's Q test. When it came to pooled specificity, a fixed-effects model was utilized in six studies that showed no significant heterogeneity in the Cochrane's Q test and determined as 93.1% (CI 90.7-95.4%). The pooled positive predictive value which was done using the random-effects model on six studies that showed significant heterogeneity was 91.6% (CI 87.3-95.8%). The pooled negative predictive value which was done using the random-effects model on six studies that showed significant heterogeneity was 93.6% (CI 90.4-96.8%). CONCLUSION: AI-assisted EUS shows a high degree of accuracy in the detection and differentiation of pancreatic space-occupying lesions over conventional EUS. Its application may promote prompt and accurate diagnosis of pancreatic pathologies.


Assuntos
Inteligência Artificial , Neoplasias Pancreáticas , Adulto , Humanos , Sensibilidade e Especificidade , Pâncreas/patologia , Endossonografia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...