Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315097

RESUMO

DNA combing and DNA spreading are two central approaches for studying DNA replication fork dynamics genome-wide at single-molecule resolution by distributing labeled genomic DNA on coverslips or slides for immunodetection. Perturbations in DNA replication fork dynamics can differentially affect either leading or lagging strand synthesis, for example, in instances where replication is blocked by a lesion or obstacle on only one of the two strands. Thus, we sought to investigate whether the DNA combing and/or spreading approaches are suitable for resolving adjacent sister chromatids during DNA replication, thereby enabling the detection of DNA replication dynamics within individual nascent strands. To this end, we developed a thymidine labeling scheme that discriminates between these two possibilities. Our data suggests that DNA combing resolves sister chromatids, allowing the detection of strand-specific alterations, whereas DNA spreading typically does not. These findings have important implications when interpreting DNA replication dynamics from data obtained by these two commonly used techniques.


Assuntos
Cromátides , Replicação do DNA , DNA , Cromátides/genética , DNA/genética , Biologia Molecular/métodos , Dano ao DNA
2.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360994

RESUMO

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Endonucleases Flap/uso terapêutico , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/genética
3.
Nat Commun ; 14(1): 6140, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783689

RESUMO

DNA replication and repair defects or genotoxic treatments trigger interferon (IFN)-mediated inflammatory responses. However, whether and how IFN signaling in turn impacts the DNA replication process has remained elusive. Here we show that basal levels of the IFN-stimulated gene 15, ISG15, and its conjugation (ISGylation) are essential to protect nascent DNA from degradation. Moreover, IFNß treatment restores replication fork stability in BRCA1/2-deficient cells, which strictly depends on topoisomerase-1, and rescues lethality of BRCA2-deficient mouse embryonic stem cells. Although IFNß activates hundreds of genes, these effects are specifically mediated by ISG15 and ISGylation, as their inactivation suppresses the impact of IFNß on DNA replication. ISG15 depletion significantly reduces cell proliferation rates in human BRCA1-mutated triple-negative, whereas its upregulation results in increased resistance to the chemotherapeutic drug cisplatin in mouse BRCA2-deficient breast cancer cells, respectively. Accordingly, cells carrying BRCA1/2 defects consistently show increased ISG15 levels, which we propose as an in-built mechanism of drug resistance linked to BRCAness.


Assuntos
Proteína BRCA1 , Interferons , Animais , Humanos , Camundongos , Proteína BRCA1/genética , Sobrevivência Celular , Proteína BRCA2/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Citocinas/metabolismo
5.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205507

RESUMO

DNA combing and DNA spreading are two central approaches for studying DNA replication fork dynamics genome-wide at single-molecule resolution by distributing labeled genomic DNA on coverslips or slides for immunodetection. Perturbations in DNA replication fork dynamics can differentially affect either leading or lagging strand synthesis, for example in instances where replication is blocked by a lesion or obstacle on only one of the two strands. Thus, we sought to investigate whether the DNA combing and/or spreading approaches are suitable for resolving adjacent sister chromatids during DNA replication, thereby enabling the detection of DNA replication dynamics within individual nascent strands. To this end, we developed a thymidine labeling scheme that discriminates between these two possibilities. Our data suggests that DNA combing resolves single chromatids, allowing the detection of strand-specific alterations, whereas DNA spreading does not. These findings have important implications when interpreting DNA replication dynamics from data obtained by these two commonly used techniques.

6.
Nat Commun ; 13(1): 6722, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344511

RESUMO

Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Troca de Cromátide Irmã , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sítios Frágeis do Cromossomo , Recombinação Homóloga/genética , DNA
7.
Org Process Res Dev ; 26(4): 1279-1288, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35464822

RESUMO

Many chemical reactions contain heterogeneous reagents, products, byproducts, or catalysts, making their transposition from batch to continuous-flow processing challenging. Herein, we report the use of a photochemical rotor-stator spinning disk reactor (pRS-SDR) that can handle and scale solid-containing photochemical reaction conditions in flow. Its ability to handle slurries was showcased for the TiO2-mediated aerobic photodegradation of aqueous methylene blue. The use of a fast rotating disk imposes high shear forces on the multiphase reaction mixture, ensuring its homogenization, increasing the mass transfer, and improving the irradiation profile of the reaction mixture. The pRS-SDR performance was also compared to other lab-scale reactors in terms of water treated per reactor volume and light power input.

8.
Cancer Res ; 81(24): 6171-6182, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34548335

RESUMO

The BRCA1 tumor suppressor gene encodes a multidomain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks, which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathologic features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer. SIGNIFICANCE: These findings reveal the importance of a patient-derived BRCA1 coiled-coil domain sequence variant in embryonic development, mammary tumor suppression, and therapy response.See related commentary by Mishra et al., p. 6080.


Assuntos
Proteína BRCA1/fisiologia , Proteína do Grupo de Complementação N da Anemia de Fanconi/fisiologia , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga , Neoplasias Mamárias Animais/patologia , Reparo de DNA por Recombinação , Animais , Apoptose , Proteína BRCA2/fisiologia , Proliferação de Células , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/fisiologia
9.
Mol Cell ; 81(22): 4692-4708.e9, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34555355

RESUMO

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.


Assuntos
Proteína BRCA1/genética , DNA Ligase Dependente de ATP/genética , DNA de Cadeia Simples , Proteína Homóloga a MRE11/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Biópsia , Sistemas CRISPR-Cas , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Aberrações Cromossômicas , Dano ao DNA , DNA Ligase Dependente de ATP/metabolismo , Feminino , Humanos , Lentivirus/genética , Neoplasias Mamárias Animais , Camundongos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes
11.
Nat Cell Biol ; 23(6): 608-619, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108662

RESUMO

Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms.


Assuntos
Dano ao DNA , Reparo do DNA , Instabilidade Genômica , Fator 1 de Elongação de Peptídeos/metabolismo , Elongação da Transcrição Genética , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Células HCT116 , Humanos , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Ubiquitinação
12.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952518

RESUMO

The stalled fork protection pathway mediated by breast cancer 1/2 (BRCA1/2) proteins is critical for replication fork stability. However, it is unclear whether additional mechanisms are required to maintain replication fork stability. We describe a hitherto unknown mechanism, by which the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily-A containing DEAD/H box-1 (SMARCAD1) stabilizes active replication forks, that is essential to maintaining resistance towards replication poisons. We find that SMARCAD1 prevents accumulation of 53BP1-associated nucleosomes to preclude toxic enrichment of 53BP1 at the forks. In the absence of SMARCAD1, 53BP1 mediates untimely dissociation of PCNA via the PCNA-unloader ATAD5, causing frequent fork stalling, inefficient fork restart, and accumulation of single-stranded DNA. Although loss of 53BP1 in SMARCAD1 mutants rescues these defects and restores genome stability, this rescued stabilization also requires BRCA1-mediated fork protection. Notably, fork protection-challenged BRCA1-deficient naïve- or chemoresistant tumors require SMARCAD1-mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.

13.
Nat Commun ; 10(1): 3287, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337767

RESUMO

Homologous recombination (HR) and Fanconi Anemia (FA) pathway proteins in addition to their DNA repair functions, limit nuclease-mediated processing of stalled replication forks. However, the mechanism by which replication fork degradation results in genome instability is poorly understood. Here, we identify RIF1, a non-homologous end joining (NHEJ) factor, to be enriched at stalled replication forks. Rif1 knockout cells are proficient for recombination, but displayed degradation of reversed forks, which depends on DNA2 nuclease activity. Notably, RIF1-mediated protection of replication forks is independent of its function in NHEJ, but depends on its interaction with Protein Phosphatase 1. RIF1 deficiency delays fork restart and results in exposure of under-replicated DNA, which is the precursor of subsequent genomic instability. Our data implicate RIF1 to be an essential factor for replication fork protection, and uncover the mechanisms by which unprotected DNA replication forks can lead to genome instability in recombination-proficient conditions.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteínas de Ligação a Telômeros/fisiologia , Animais , Células Cultivadas , DNA Cruciforme/química , Camundongos , Domínios Proteicos , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
14.
Mol Cell ; 73(6): 1267-1281.e7, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30704900

RESUMO

BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.


Assuntos
Proteína BRCA1/genética , Cromatina/enzimologia , Fibroblastos/enzimologia , Haploinsuficiência , Neoplasias/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Proteína BRCA2/genética , Linhagem Celular Tumoral , Cromatina/genética , Dano ao DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
15.
Cancer Res ; 78(2): 528-541, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141899

RESUMO

The clinical use of multiple classes of cancer chemotherapeutics is limited by irreversible, dose-dependent, and sometimes life-threatening cardiotoxicity. Though distinct in their mechanisms of action, doxorubicin, paclitaxel, and 5-FU all induce rapid and robust upregulation of atypical G protein Gß5 in the myocardium correlating with oxidative stress, myocyte apoptosis, and the accumulation of proinflammatory and profibrotic cytokines. In ventricular cardiac myocytes (VCM), Gß5 deficiency provided substantial protection against the cytotoxic actions of chemotherapeutics, including reductions in oxidative stress and simultaneous attenuation of ROS-dependent activation of the ATM and CaMKII proapoptotic signaling cascades. In addition, Gß5 loss allowed for maintenance of Δψm, basal mitochondrial calcium uniporter expression, and mitochondrial Ca2+ levels, effects likely to preserve functional myocyte excitation-contraction coupling. The deleterious effects of Gß5 are not restricted to VCM, however, as Gß5 knockdown also reduces chemotherapy-induced release of proinflammatory cytokines (e.g., TNFα), hypertrophic factors (e.g., ANP), and profibrotic factors (e.g., TGFß1) from both VCM and ventricular cardiac fibroblasts, with the most dramatic reduction occurring in cocultured cells. Our experiments suggest that Gß5 facilitates the myofibroblast transition, the persistence of which contributes to pathologic remodeling and heart failure. The convergence of Gß5-mediated, ROS-dependent signaling pathways in both cell types represents a critical etiological factor in the pathogenesis of chemotherapy-induced cardiotoxicity. Indeed, intracardiac injection of Gß5-targeted shRNA allowed for heart-specific protection against the damaging impact of chronic chemotherapy. Together, our results suggest that inhibition of Gß5 might represent a novel means to circumvent cardiotoxicity in cancer patients whose treatment regimens include anthracyclines, taxanes, or fluoropyrimidines.Significance: These findings suggest that inhibiting an atypical G-protein might provide a strategy to limit the cardiotoxicity in cancer patients treated with anthracyclines, taxanes, or fluoropyrimidines. Cancer Res; 78(2); 528-41. ©2017 AACR.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Fibrose/patologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibrose/induzido quimicamente , Fibrose/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Nat Commun ; 8(1): 859, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038466

RESUMO

Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , Replicação do DNA , Recombinação Homóloga , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Linhagem Celular Tumoral , Instabilidade Cromossômica , Proteínas de Ligação a DNA , Humanos
18.
Nat Rev Mol Cell Biol ; 18(10): 610-621, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28676700

RESUMO

Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.


Assuntos
Montagem e Desmontagem da Cromatina , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Dano ao DNA , Replicação do DNA , Humanos
20.
Nat Commun ; 7: 12425, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498558

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib has been approved for treatment of advanced ovarian cancer associated with BRCA1 and BRCA2 mutations. BRCA1- and BRCA2-mutated cells, which are homologous recombination (HR) deficient, are hypersensitive to PARPi through the mechanism of synthetic lethality. Here we examine the effect of PARPi on HR-proficient cells. Olaparib pretreatment, PARP1 knockdown or Parp1 heterozygosity of Brca2(cko/ko) mouse embryonic stem cells (mESCs), carrying a null (ko) and a conditional (cko) allele of Brca2, results in viable Brca2(ko/ko) cells. PARP1 deficiency does not restore HR in Brca2(ko/ko) cells, but protects stalled replication forks from MRE11-mediated degradation through its impaired recruitment. The functional consequence of Parp1 heterozygosity on BRCA2 loss is demonstrated by a significant increase in tumorigenesis in Brca2(cko/cko) mice. Thus, while olaparib efficiently kills BRCA2-deficient cells, we demonstrate that it can also contribute to the synthetic viability if PARP is inhibited before BRCA2 loss.


Assuntos
Proteína BRCA2/deficiência , Poli(ADP-Ribose) Polimerase-1/deficiência , Animais , Proteína BRCA2/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Integrases/metabolismo , Proteína Homóloga a MRE11/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...