Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(29): 25822-25836, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910162

RESUMO

A Pt-nanocoated layer (thickness of approx. 10-20 nm) with Pt-O-Ce bonds was created through the water radiolysis reaction on a CeO x nanowire (NW), which was induced by electron beam irradiation to the mixed suspension of K2PtCl4 aqueous solution and the CeO x NW. In turn, when Pt-nanocoated CeO x NW/C (Pt/C ratio = 0.2) was used in the cathode layer of a membrane electrode assembly (MEA), both an improved fuel cell performance and stability were achieved. The fuel cell performance observed for the MEA using Pt-nanocoated CeO x NW/C with Pt-O-Ce bonds, which was prepared using the electron beam irradiation method, improved and maintained its performance (observed cell potential of approximately 0.8 V at 100 mW cm-2) from 30 to 140 h after the start of operation. In addition, the activation overpotential at 100 mA cm-2 (0.17 V) obtained for MEA using Pt-nanocoated CeO x NW/C was approximately half of the value at 100 mA cm-2 (0.35 V) of MEA using a standard Pt/C cathode. In contrast, the fuel cell performance (0.775 V at 100 mW cm-2 after 80 h of operation) of MEA using a nanosized Pt-loaded CeO x NW (Pt/C = 0.2), which was prepared using the conventional chemical reduction method, was lower than that of MEA using a Pt-nanocoated CeO x /C cathode and showed reduction after 80 h of operation. It is considered why the nanocoated layer having Pt-O-Ce bonds heterogeneously formed on the surface of the CeO x NW and the bare CeO2 surface consisting of Ce4+ cations would become unstable in an acidic atmosphere. Furthermore, when a conventional low-amount Pt/C cathode (Pt/C = 0.04) was used as the cathode layer of the MEA, its stable performance could not be measured after 80 h of operation as a result of flooding caused by a lowering of electrocatalytic activity on the Pt/C cathode in the MEA. In contrast, a low-amount Pt-nanocoated CeO x NW (Pt/C = 0.04) could maintain a low activation overpotential (0.22 V at 100 mA cm-2) of MEA at the same operation time. Our surface first-principles modeling indicates that the high quality and stable performance observed for the Pt-nanocoated CeO x NW cathode of MEA can be attributed to the formation of a homogeneous electric double layer on the sample. Since the MEA performance can be improved by examining a more effective method of electron beam irradiation to all surfaces of the sample, the present work result shows the usefulness of the electron beam irradiation method in preparing active surfaces. In addition, the quantum beam technology such as the electron beam irradiation method was shown to be useful for increasing both performance and stability of fuel cells.

2.
ACS Appl Mater Interfaces ; 8(14): 9059-70, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27008198

RESUMO

Pt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Microanalytical data obtained by these methods were discussed in relation to atomistic simulation performed on the interface structures. The combined techniques of HXPS, TEM-EELS, and atomistic simulation indicate that the Pt-CeO(x) NW interface in the electrocatalyst contains two different defect clusters: Frenkel defect clusters (i.e., 2Pt(i)(••) - 4O(i)″ - 4V(o)(••) - V(Ce)″″) formed in the surface around the Pt-CeO(x) NW interface and Schottky defect clusters (i.e., (Pt(Ce)″ - 2V(O)(••) - 2Ce(Ce)') and (Pt(Ce)″ - V(O)(••))) which appear in the bulk of the Pt-CeO(x) NW interface similarly to Pt-CeO(x) NP/C. It is concluded that the formation of both Frenkel defect clusters and Schottky defect clusters at the Pt-CeO(x) NW heterointerface contributes to the promotion of ORR activity and permits the use of lower Pt-loadings in these electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...