Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14173, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986080

RESUMO

To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.


Assuntos
Ácido N-Acetilneuramínico , Neuraminidase , Apoptose , Diferenciação Celular , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Neutrófilos/metabolismo
2.
J Proteome Res ; 17(1): 315-324, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29061044

RESUMO

Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.


Assuntos
Vesículas Extracelulares/patologia , Inflamação , Células Supressoras Mieloides/ultraestrutura , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Movimento Celular , Camundongos , Proteínas Ubiquitinadas/análise , Ubiquitinação
3.
J Proteome Res ; 16(1): 238-246, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27728760

RESUMO

In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.


Assuntos
Antígeno CD47/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Células Supressoras Mieloides/metabolismo , Proteoma/genética , Trombospondina 1/genética , Sequência de Aminoácidos , Animais , Antígeno CD47/metabolismo , Quimiotaxia/genética , Exossomos/química , Exossomos/metabolismo , Feminino , Glicosilação , Glândulas Mamárias Animais , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/patologia , Proteoma/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Trombospondina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...