Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 340: 125645, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34325389

RESUMO

The aim of this work was to compare the performance of the two types of photosynthetic microbial fuel cells (MFCs) fed with real wastewater- one having plant Canna indica (PMFC) and the other having alga Chlorella vulgaris (AMFC) at the cathode. The chemical oxygen demand (COD), phosphate, and nitrate removal stood at 57.16% 88.81%, 59.82% for PMFC and 65.27%, 95.59%, 66.61% for the AMFC. While AMFC was slightly superior in water treatment, the power output was 6 times higher in PMFC (22.76 mW m-2) than the AMFC (3.64 mW m-2). The biomass growth was good in both systems, with biomass productivity of 0.031 Kg m-3 day-1 in AMFC and a leaf area index of 0.006 in PMFC. The study's findings suggest that PMFCs are equally good or even better than AMFCs when the goal is simultaneous water treatment and power generation.


Assuntos
Fontes de Energia Bioelétrica , Chlorella vulgaris , Purificação da Água , Zingiberales , Eletricidade , Eletrodos , Águas Residuárias
2.
Probiotics Antimicrob Proteins ; 13(4): 1005-1017, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33544362

RESUMO

Currently, there are no effective therapeutic agents to limit intestinal mucosal damage associated with inflammatory bowel disease (IBD). Based on several clinical studies, probiotics have emerged as a possible novel therapeutic strategy for IBD; however, their possible mechanisms are still poorly understood. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the protective effects of cell wall contents of three Lactobacillus species in lipopolysaccharide (LPS)-induced colitis rats. LPS-sensitized rats were rendered colitic by colonic instillation of LPS (500 µg/rat) for 14 consecutive days. Concurrently, cell wall contents isolated from 106 CFU of L. casei (LC), L. acidophilus (LA), and L. rhamnosus (LA) was given subcutaneously for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight, and histological analysis. Colonic inflammatory markers (myeloperoxidase activity, C-reactive protein, and pro-inflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione, and nitric oxide) were also assayed. Cell wall contents of LC, LA, and LR significantly ameliorated the severity of colitis by reducing body weight loss and diarrhea and bleeding incidence, improving food intake, colon weight/length, spleen weight, and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted anti-oxidant molecule. In conclusion, cell wall contents of LC, LA, and LR attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress.


Assuntos
Colite , Lactobacillus , Estresse Oxidativo , Probióticos , Animais , Parede Celular/química , Colite/induzido quimicamente , Colite/terapia , Lipopolissacarídeos , Ratos , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA