Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geochim Cosmochim Acta ; 299: 199-218, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34776527

RESUMO

In-situ oxygen three-isotope analyses of chondrules and isolated olivine grains in the Paris (CM) chondrite were conducted by secondary ion mass spectrometry (SIMS). Multiple analyses of olivine and/or pyroxene in each chondrule show indistinguishable Δ17O values, except for minor occurrences of relict olivine grains (and one low-Ca pyroxene). A mean Δ17O value of these homogeneous multiple analyses was obtained for each chondrule, which represent oxygen isotope ratios of the chondrule melt. The Δ17O values of individual chondrules range from -7‰ to -2‰ and generally increase with decreasing Mg# of olivine and pyroxene in individual chondrules. Most type I (FeO-poor) chondrules have high Mg# (~99) and variable Δ17O values from -7.0‰ to -3.3‰. Other type I chondrules (Mg# ≤97), type II (FeO-rich) chondrules, and two isolated FeO-rich olivine grains have host Δ17O values from -3‰ to -2‰. Eight chondrules contain relict grains that are either 16O-rich or 16O-poor relative to their host chondrule and show a wide range of Δ17O values from -13‰ to 0‰. The results from chondrules in the Paris meteorite are similar to those in Murchison (CM). Collectively, the Δ17O values of chondrules in CM chondrites continuously increase from -7‰ to -2‰ with decreasing Mg# from 99 to 37. The majority of type I chondrules (Mg# >98) show Δ17O values from -6‰ to -4‰, while the majority of and type II chondrules (Mg# 60-70) show Δ17O values of -2.5‰. The covariation of Δ17O versus Mg# observed among chondrules in CM chondrites may suggest that most chondrules in carbonaceous chondrites formed in a single large region across the snow line where the contribution of 16O-poor ice to chondrule precursors and dust enrichment factors varied significantly.

2.
Geochim Cosmochim Acta ; 228: 220-242, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713349

RESUMO

High-precision oxygen three-isotope measurements of olivine and pyroxene were performed on 29 chondrules in the Murchison CM2 chondrite by secondary ion mass spectrometry (SIMS). The oxygen isotope ratios of analyzed chondrules all plot very close to the primitive chondrule minerals (PCM) line. In each of 24 chondrules, the olivine and/or pyroxene grains analyzed show indistinguishable oxygen isotope ratios. Exceptions are minor occurrences of isotopically distinguished relict olivine grains, which were found in nine chondrules. The isotope homogeneity of these phenocrysts is consistent with a co-magmatic crystallization of olivine and pyroxene from the final chondrule melts and a significant oxygen isotope exchange between the ambient gas and the melts. Homogeneous type I chondrules with Mg#'s of 98.9-99.5 have host chondrule Δ17O values ranging from -6.0‰ to -4.1‰, with one exception (Δ17O: -1.2‰; Mg#: 99.6). Homogeneous chondrules with Mg#'s <96, including four type II chondrules (Mg# ~65-70), have Δ17O values of around -2.5%. Five type I chondrules (Mg# ≥99) have internally heterogeneous oxygen isotope ratios with Δ17O values ranging from -6.5% to -4.0%, similar to those of host chondrule values. These heterogeneous chondrules have granular or porphyritic textures, convoluted outlines, and contain numerous metal grains dispersed within fine-grained silicates. This is consistent with a low degree of melting of the chondrule precursors, possibly because of a low temperature of the melting event and/or a shorter duration of melting. The Δ17O values of relict olivine grains in nine chondrules range from -17.9% to -3.4%, while most of them overlap the range of the host chondrule values. Similar to those reported from multiple carbonaceous chondrites (Acfer 094, Y-82094, CO, CR, and CV), the Δ17O ~-5% and high Mg# (≥99) chondrules, which might derive from a reduced reservoir with limited dust enrichments (~50× Solar System), dominate the population of chondrules in Murchison. Other chondrules in Murchison formed in more oxidizing environment (Mg#<96) with higher Δ17O values of -2.5%, in agreement with the low Mg# chondrules in Acfer 094 and CO chondrites and some chondrules in CV and CR chondrites. They might form in environments containing the same anhydrous precursors as for the Δ17O ~-5% and Mg# ~99 chondrules, but enriched in 16O-poor H2O ice (~0.3-0.4× the CI dust; Δ170>0%) and at dust enrichments of ~300-2000×. Regarding the Mg# and oxygen isotope ratios, the chondrule populations sampled by CM and CO chondrites are similar and indistinguishable. The similarity of these 16O-rich components in CO and CM chondrites is also supported by the common Fe/Mn ratio of olivine in type II chondrules. Although they accreted similar high-temperature silicates, CO chondrites are anhydrous compared to CM chondrites, suggesting they derived from different parent bodies formed inside and outside the snow line, respectively. If chondrules in CO and CM chondrites formed at the same disk locations but the CM parent body accreted later than the CO parent body, the snow line might have crossed the the common chondrule-forming region towards the Sun between the time of the CO and CM parent bodies accretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...