Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 50, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183482

RESUMO

Germacrene D, a sesquiterpenoid compound found mainly in plant essential oils at a low level as (+) and/or (-) enantiomeric forms, is an ingredient for the fragrance industry, but a process for the sustainable supply of enantiopure germacrene D is not yet established. Here, we demonstrate metabolic engineering in yeast (Saccharomyces cerevisiae) achieving biosynthesis of enantiopure germacrene D at a high titer. To boost farnesyl pyrophosphate (FPP) flux for high-level germacrene D biosynthesis, a background yeast chassis (CENses5C) was developed by genomic integration of the expression cassettes for eight ergosterol pathway enzymes that sequentially converted acetyl-CoA to FPP and by replacing squalene synthase promoter with a copper-repressible promoter, which restricted FPP flux to the competing pathway. Galactose-induced expression of codon-optimized plant germacrene D synthases led to 13-30 fold higher titers of (+) or (-)-germacrene D in CENses5C than the parent strain CEN.PK2.1C. Furthermore, genomic integration of germacrene D synthases in GAL80, LPP1 and rDNA loci generated CENses8(+D) and CENses8(-D) strains, which produced 41.36 µg/ml and 728.87 µg/ml of (+) and (-)-germacrene D, respectively, without galactose supplementation. Moreover, coupling of mitochondrial citrate pool to the cytosolic acetyl-CoA, by expressing a codon-optimized ATP-citrate lyase of oleaginous yeast, resulted in 137.71 µg/ml and 815.81 µg/ml of (+) or (-)-germacrene D in CENses8(+D)* and CENses8(-D)* strains, which were 67-120 fold higher titers than in CEN.PK2.1C. In fed-batch fermentation, CENses8(+D)* and CENses8(-D)* produced 290.28 µg/ml and 2519.46 µg/ml (+) and (-)-germacrene D, respectively, the highest titers in shake-flask fermentation achieved so far. KEY POINTS: • Engineered S. cerevisiae produced enantiopure (+) and (-)-germacrene D at high titers • Engineered strain produced up to 120-fold higher germacrene D than the parental strain • Highest titers of enantiopure (+) and (-)-germacrene D achieved so far in shake-flask.


Assuntos
Galactose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetilcoenzima A , Códon
2.
Plant Mol Biol ; 113(4-5): 219-236, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898975

RESUMO

Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B. serrata, an economically-important Boswellia species. The analysis of large-scale RNA-seq data of bark and leaf samples representing more than 600 million sequencing reads led to the identification of 32 TPSs, which were classified based on phylogenetic relationship into various TPSs families found in angiosperm species such as TPS-a, b, c, e/f, and g. Moreover, RNA-seq analysis of bark samples collected at 0-24 h post-wounding shortlisted 14 BsTPSs that showed wound-induced transcriptional upregulation in bark, suggesting their important role in wound-induced biosynthesis of resin volatiles. Biochemical characterization of a bark preferentially-expressed and wound-inducible TPS (BsTPS2) in vitro and in planta assays revealed its involvement in resin terpene biosynthesis. Bacterially-expressed recombinant BsTPS2 catalyzed the conversion of GPP and FPP into (S)-( +)-linalool and (E)-(-)-nerolidol, respectively, in vitro assays. However, BsTPS2 expression in Nicotiana benthamiana found that BsTPS2 is a plastidial linalool synthase. In contrast, cytosolic expression of BsTPS2 did not form any product. Overall, the present work unraveled a suite of TPSs that potentially contributed to the biosynthesis of resin volatiles in Boswellia and biochemically characterized BsTPS2, which is involved in wound-induced biosynthesis of (S)-( +)-linalool, a monoterpene resin volatile with a known role in plant defense.


Assuntos
Alquil e Aril Transferases , Boswellia , Humanos , Boswellia/genética , Boswellia/metabolismo , Filogenia , Terpenos/metabolismo , Alquil e Aril Transferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...