Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 31(3): 263-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20221664

RESUMO

We have been able to design model filled rubbers with exactly the same chemical structure but different filler arrangements. From these model systems, we show that the particle arrangement in the elastomeric matrix controls the strain softening at small strain amplitude known as the Payne effect, as well as the elastic modulus dependence on the temperature. More precisely, we observed that the Payne effect disappears and the elastic modulus only weakly depends on the temperature when the particles are well separated. On the contrary, samples with the same interfacial physical chemistry but with aggregated particles show large amplitudes of the Payne effect and their elastic modulus decreases significantly with the temperature. We discuss these effects in terms of glassy bridge formation between filler particles. The observed effects provide evidence that glassy bridges play a key role on the mechanical properties of filled rubbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...