Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(26): 7669-7680, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32551663

RESUMO

In polymer nanocomposites, particle-polymer interactions play a key role both in the processing and in the final properties of the obtained materials. Specifically, for silica, because of the surface polarity, surface modification is commonly used to improve the compatibility with apolar polymer matrices in order to prevent agglomeration. In this work, a new way to investigate the polymer-silica affinity and determine dispersibility parameters (HDP) of silica particles in the 3D Hansen space using a solvent approach is proposed. These parameters are estimated from the assessment of the stability of suspensions in a set of organic solvents. Based on the respective locations of the solvent, polymer, and silica representative points in the 3D Hansen space, the adsorption of a given polymer in solution in a given solvent can be predicted. This is shown with the industrial precipitated silica Zeosil 1165MP in combination with polystyrene and polybutadiene. It is shown that silanization of the silica particles decreases the adsorption of polystyrene, even though because of this surface treatment, silica comes closer to polystyrene in the Hansen space. This counter-intuitive effect is rationalized based on the consideration of an adsorption parameter χS computed from the relative locations of the solvent, polymer, and particles in the 3D Hansen space. Basically, this parameter is related to the respective distances of the solvent and polymer representative points to that of the particle in the Hansen space.

2.
ACS Macro Lett ; 9(6): 843-848, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35648516

RESUMO

We took advantage of pseudopartial wetting to promote the spreading of precursor films whose surface density smoothly decays to zero away from a sessile droplet. By following the spreading dynamics of semidilute precursor films of polybutadiene melts on silicon wafers, we measure molecular diffusion coefficients for different molar masses and temperatures. For homopolymers, chains follow a thermally activated 2D Rouse diffusion mechanism, with an activation energy revealing polymer segment interactions with the surface. This Rouse model is generalized to chains with specific terminal groups.

3.
Langmuir ; 35(24): 7727-7734, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117730

RESUMO

We investigate the evolution over time of the space profiles of precursor films spreading away from a droplet of polymer in the poorly explored pseudo-partial wetting case. We use polystyrene melt droplets on oxidized silicon wafers. Interestingly, the film thicknesses measured by ellispometric microscopy are found in the 0.01 to 1 nm range. These thicknesses were validated by atomic force microscopy measurements performed on the textured film obtained after quenching at room temperature. From this, an effective thickness is obtained and compares well to the thicknesses measured by ellipsometry, validating the use of an optical method in this range of thickness. Ellipsometric microscopy provides a height resolution below the ångström with lateral resolution, image size, and framerate well adapted to spreading precursor films. From this, we demonstrate that precursor films of polystyrene consist of polymer chains with a surface density decreasing to zero away from the droplet. We further find that the polymer chains follow a simple diffusive law with the diffusion coefficient independent of density. This demonstrates that polystyrene chains spread independently in precursor films in pseudo-partial wetting condition. This behavior differs significantly from the case of chains spreading in total wetting for which the diffusion coefficient was found in the literature to depend on surface density or thickness.

4.
Langmuir ; 34(9): 3010-3020, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29443532

RESUMO

A new method based on the combination of small-angle scattering, reverse Monte Carlo simulations, and an aggregate recognition algorithm is proposed to characterize the structure of nanoparticle suspensions in solvents and polymer nanocomposites, allowing detailed studies of the impact of different nanoparticle surface modifications. Experimental small-angle scattering is reproduced using simulated annealing of configurations of polydisperse particles in a simulation box compatible with the lowest experimental q-vector. Then, properties of interest like aggregation states are extracted from these configurations and averaged. This approach has been applied to silane surface-modified silica nanoparticles with different grafting groups, in solvents and after casting into polymer matrices. It is shown that the chemistry of the silane function, in particular mono- or trifunctionality possibly related to patch formation, affects the dispersion state in a given medium, in spite of an unchanged alkyl-chain length. Our approach may be applied to study any dispersion or aggregation state of nanoparticles. Concerning nanocomposites, the method has potential impact on the design of new formulations allowing controlled tuning of nanoparticle dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...