Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116454, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735172

RESUMO

In marine invertebrates, abiotic stresses on adults can act directly on gametes quality, which impacts phenotype and development success of the offspring. Human activities introduce noise pollution in the marine environment but still few studies on invertebrates have considered the impacts on adult or larval stages separately, and to our knowledge, never investigated the cross-generational effects of anthropogenic noise. This article explores parental effects of pile driving noise associated with the building phase of offshore wind turbines on a coastal invertebrate, Pecten maximus (L.). Adults were exposed to increasing levels of sound during gametogenesis, then their offspring were also exposed. The results highlight that anthropogenic noise experienced by the parents reduces their reproductive investment and modify larval response in similar conditions. Also, larvae from exposed adults grew 6-fold faster and metamorphosed 5-fold faster, which could be an amplified adaptive strategy to reduce the pelagic phase in a stressful environment.


Assuntos
Larva , Ruído , Estresse Fisiológico , Animais , Ruído/efeitos adversos , Pecten , Organismos Aquáticos , Reprodução
2.
Ecol Evol ; 13(11): e10691, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928200

RESUMO

The Arctic is exposed to unprecedented warming, at least three times higher than the global average, which induces significant melting of the cryosphere. Freshwater inputs from melting glaciers will subsequently affect coastal primary production and organic matter quality. However, due to a lack of basic knowledge on the physiology of Arctic organisms, it remains difficult to understand how these future trophic changes will threaten the long-term survival of benthic species in coastal habitats. This study aimed to gain new insights into the seasonal lipid dynamics of four dominant benthic bivalves (Astarte moerchi, Hiatella arctica, Musculus discors, and Mya truncata) collected before and after sea ice break-up in a high-Arctic fjord (Young Sound, NE Greenland). Total lipid content and fatty acid composition of digestive gland neutral lipids were analyzed to assess bivalve energy reserves while the fatty acid composition of gill polar lipids was determined as a biochemical indicator of interspecies variations in metabolic activity and temperature acclimation. Results showed a decrease in lipid reserves between May and August, suggesting that bivalves have only limited access to fresh organic matter until sea ice break-up. The lack of seasonal variation in the fatty acid composition of neutral lipids, especially essential ω3 fatty acids, indicates that no fatty acid transfer from the digestive glands to the gonads occurs between May and August, and therefore, no reproductive investment takes place during this period. Large interspecies differences in gill fatty acid composition were observed, which appear to be related to differences in species life span and metabolic strategies. Such differences in gill fatty acid composition of polar lipids, which generally influence metabolic rates and energy needs, may imply that not all benthic species will be equally sensitive to future changes in primary production and organic matter quality in Arctic coastal habitats.

3.
Mar Environ Res ; 192: 106220, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832282

RESUMO

Polar regions are warming faster than the world average and are profoundly affected by changes in the spatio-temporal dynamics of sea ice, with largely unknown repercussions on the functioning of marine ecosystems. Here, we investigated the impacts of interannual sea-ice variability on coastal benthic communities in Antarctica, focusing on a close-to-pristine area (Adélie Land). We investigated shell growth of the circum-Antarctic bivalve Laternula elliptica, considered a key species in these soft bottom benthic communities. Chondrophores of live-collected clams were prepared using standard sclerochronological methods to study the interannual variability of shell growth from 1996 to 2015. Our results show that the master chronology varied with sea-ice dynamics. When sea ice breaks up too early, sympagic algae do not have time to accumulate sufficiently high biomass, thus strongly limiting the energy input to the benthos. This negatively affects the physiological performance of L. elliptica, thereby altering their population dynamics and hence the functioning of these soft-bottom ecosystems.


Assuntos
Bivalves , Ecossistema , Animais , Regiões Antárticas , Camada de Gelo , Bivalves/fisiologia , Biomassa
4.
Mar Environ Res ; 190: 106106, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37527619

RESUMO

With the progress of the offshore renewable energy sector and electrical interconnection projects, a substantial rise in the number of submarine power cables is expected soon. Such cables emit either alternating or direct current magnetic fields whose impact on marine invertebrates is currently unknown and hardly studied. In this context, this study aimed to assess potential short-term exposure (30 min) effects of both alternating and direct magnetic fields of increasing intensity (72-304 µT) on the behavior of the high-ecological value velvet crab (Necora puber). Three experiments were designed to evaluate whether the strongest magnetic field intensities induce crabs' attraction or repulsion responses, and whether foraging and sheltering behaviors may be modified. We extracted from video analyses several variables as the time budgets crabs spent immobile, moving, feeding, or sheltering as well as total and maximal distance reached in the magnetic field (MF) gradient. The crabs exposed to artificial MF did not exhibit significant behavioral changes compared with those exposed to the "natural" MF. Overall, our results suggest that, at such intensities, artificial magnetic fields do not significantly alter behaviors of N. puber. Nevertheless, future studies should be conducted to examine the effects of longer exposure periods and to detect potential habituation or resilience processes.


Assuntos
Braquiúros , Animais , Campos Magnéticos , Organismos Aquáticos , Energia Renovável , Alimentos Marinhos
5.
Mar Pollut Bull ; 191: 114969, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148589

RESUMO

One of the biggest challenges of the 21st century is to reduce carbon emissions and offshore wind turbines seem to be an efficient solution. However, during the installation phase, high levels of noise are emitted whose impacts remain not well known, particularly on benthic marine invertebrates displaying a bentho-planktonic life-cycle. For one century, larval settlement and subsequent recruitment has been considered as a key topic in ecology as it determines largely population renewal. Whereas several recent studies have shown that trophic pelagic but also natural soundscape cues could trigger bivalve settlement, the role of anthropogenic noise remains poorly documented. Therefore, we conducted experiments to assess potential interacting effects of diet and pile driving or drilling sounds on the great scallop (Pecten maximus) larval settlement. We demonstrate here that pile driving noise stimulates both growth and metamorphosis as well as it increases the total lipid content of competent larvae. Conversely, drilling noise reduces both survival and metamorphosis rates. For the first time, we provide evidence of noise impacts associated to MREs installation on P. maximus larvae and discuss about potential consequences on their recruitment.


Assuntos
Pecten , Animais , Larva , Som , Ruído , Metamorfose Biológica
6.
PLoS One ; 18(1): e0279690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630361

RESUMO

Valvometry techniques used to monitor bivalve gaping activity have elucidated numerous relationships with environmental fluctuations, along with biological rhythms ranging from sub-daily to seasonal. Thus, a precise understanding of the natural activity of bivalves (i.e., not exposed to stressful environmental variations) is necessary as a baseline for detecting abnormal behaviors (deviations). This knowledge is also needed to reliably interpret observations of bivalve gaping behavior and associated biological processes (e.g., respiration, nutrition) acquired over time-limited periods. With this in mind, we investigated the natural daily gaping activity of the great scallop (Pecten maximus) by continuously monitoring 35 individuals in several individual tanks and in situ (Bay of Saint-Brieuc, Brittany, France) using fully autonomous Hall effect sensors. Our results revealed a circadian cycle (τ = 24.0h) in scallop gaping activity. Despite significant inter-individual variability in mean opening and cycle amplitude, almost all individuals (87.5%) exhibited nocturnal activity, with valves more open at night than during the day. A shift in light regime in the tanks triggered an instantaneous change in opening pattern, indicating that light levels strongly determine scallop activity. Based on the opening status of scallops, we also identified several gaping behaviors deviating from the regular daily pattern (lack of rhythmicity, high daytime opening), potentially reflecting physiological weakness. While further long-term studies are required to fully understand the natural activity of scallops, these findings pave the way for studies focused on the scallop response to external factors and introduce further research into the detection of abnormal behaviors. Coupling observations of diel valve gaping cycles with other daily variations in organismal and environmental parameters could help explain mechanisms driving the growth patterns of scallops observed in their shell striations. From a technical perspective, our field-based monitoring demonstrates the suitability of autonomous valvometry sensors for studying mobile subtidal bivalve activity in remote offshore environments.


Assuntos
Pecten , Pectinidae , Humanos , Animais , França , Alimentos Marinhos
7.
Mar Pollut Bull ; 187: 114487, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584437

RESUMO

Sea-ice covering is drastically declining in the Arctic, opening new maritime routes and thus introducing underwater noise pollution in nearly pristine acoustic environments. Evaluating underwater noise pollution requires good acoustic propagation modeling to predict sound exposure levels. However, underwater noise modeling for acoustic risk assessments has often been carried out using simplistic propagation models, which approximate a 3D propagation in several planes (Nx2D), instead of using full 3D propagation models. However, Nx2D propagation models are impractical for winding geography and steep bathymetry as found in Arctic fjords. The purpose of this study is to estimate disturbance and masking effects on Arctic animal species from shipping noises, modeled through a traditional Nx2D BELLHOP model and a full 3D BELLHOP model. Classical Nx2D propagation modeling largely underestimates the anthropogenic noise footprint in Arctic fjords compared to using a full 3D propagation model.


Assuntos
Estuários , Ruído , Animais , Acústica , Regiões Árticas , Navios
8.
J Acoust Soc Am ; 152(6): 3235, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36586865

RESUMO

Sound is an important cue for arthropods. In insects, sound features and sound-producing apparatus are tightly correlated to enhance signal emission in larger individuals. In contrast, acoustic scaling in marine arthropods is poorly described even if they possess similar sound-producing apparatus. Here, the acoustic scaling of the European spiny lobster is analyzed by recording sounds in situ at 1 m from a wide range of body sizes. The dimensions of associated sound-producing apparatus increased with body size, indicating sound features would also be influenced by spiny lobster size. Indeed, temporal sound features changed with body size, suggesting differences in calling songs could be used for spiny lobster acoustic communication. Source levels (peak-peak) ranged from 131 to 164 dB re 1µPa for smaller and larger lobsters, respectively, which could be explained by more efficient resonating structures in larger animals. In addition, dominant frequencies were highly constrained by ambient noise levels, masking the low-frequency content of low intensity sounds from smaller spiny lobsters. Although the ecological function of spiny lobster sounds is not clear yet, these results suggest larger body sizes benefit because louder calls increase the broadcast area and potential interactions with conspecifics, as shown in the insect bioacoustic literature.


Assuntos
Palinuridae , Animais , Som , Acústica , Tamanho Corporal
9.
J Fish Biol ; 100(3): 645-659, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34921400

RESUMO

As part of energy transition, marine renewable energy devices (MRED) are currently expanding in developed countries inducing the deployment of dense networks of submarine power cables. Concern has thus raised about the cable magnetic emissions (direct or alternating current) because of potential interference with the sensorial environment of magneto-sensitive species, such as sharks and rays. This study sought to assess the short-term behavioural responses of juvenile thornback rays (Raja clavata) (n = 15) to direct and alternating (50 Hz) uniform 450-µT artificial magnetic fields using 1 h focal-sampling design based on a detailed ethogram. Careful control of magnetic fields' temporal and spatial scales was obtained in laboratory conditions through a custom-made Helmholtz coil device. Overall, qualitative or quantitative behavioural responses of juvenile rays did not significantly vary between control vs. exposed individuals over the morning period. Nonetheless, rays under direct current magnetic field increased their activity over the midday period. Synchronisation patterns were also observed for individuals receiving alternating current exposure (chronologic and qualitative similarities) coupled with a high inter-individual variance. Further studies should consider larger batches of juveniles to address the effect of long-term exposure and explore the sensitivity range of rays with dose-response designs.


Assuntos
Rajidae , Animais , Campos Magnéticos , Rajidae/fisiologia
10.
Mar Pollut Bull ; 173(Pt A): 112934, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537570

RESUMO

Marine traffic is the most pervasive underwater anthropogenic noise pollution which can mask acoustic communication in marine mammals and fish, but its effect in marine invertebrates remains unknown. Here, we performed an at sea experiment to study the potential of shipping noise to mask and alter lobster acoustic communication. We used hydrophones to record buzzing sounds and accelerometers to detect lobster carapace vibrations (i.e. the buzzing sounds' sources). We demonstrated that male individuals produced carapace vibrations under various ambient noise conditions, including heavy shipping noise. However, while the associated waterborne buzzing sounds could be recorded under natural ambient noise levels, they were masked by shipping noise. Additionally, lobsters significantly increased their call rates in presence of shipping noise, suggesting a vocal compensation due to the reduction of intraspecific communication. This study reports for the first time the potential acoustic masking of lobster acoustic communication by chronic anthropogenic noise pollution, which could affect ecologically important behaviors.


Assuntos
Nephropidae , Ruído , Acústica , Animais , Humanos , Masculino , Ruído/efeitos adversos , Navios , Som
11.
Biol Conserv ; 263: 109175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34035536

RESUMO

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.

12.
J Exp Biol ; 224(Pt 6)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766953

RESUMO

Although many crustaceans produce sounds, their hearing abilities and mechanisms are poorly understood, leaving uncertainties regarding whether or how these animals use sound for acoustic communication. Marine invertebrates lack gas-filled organs required for sound pressure detection, but some of them are known to be sensitive to particle motion. Here, we examined whether the American lobster (Homarus americanus) could detect sound and subsequently sought to discern the auditory mechanisms. Acoustic stimuli responses were measured using auditory evoked potential (AEP) methods. Neurophysiological responses were obtained from the brain using tone pips between 80 and 250 Hz, with best sensitivity at 80-120 Hz. There were no significant differences between the auditory thresholds of males and females. Repeated controls (recordings from deceased lobsters, moving electrodes away from the brain and reducing seawater temperature) indicated the evoked potentials' neuronal origin. In addition, AEP responses were similar before and after antennules (including statocysts) were ablated, demonstrating that the statocysts, a long-proposed auditory structure in crustaceans, are not the sensory organs responsible for lobster sound detection. However, AEPs could be eliminated (or highly reduced) after immobilizing hairfans, which cover much of lobster bodies. These results suggest that these external cuticular hairs are likely to be responsible for sound detection, and imply that hearing is mechanistically possible in a wider array of invertebrates than previously considered. Because the lobsters' hearing range encompasses the fundamental frequency of their buzzing sounds, it is likely that they use sound for intraspecific communication, broadening our understanding of the sensory ecology of this commercially vital species. The lobsters' low-frequency acoustic sensitivity also underscores clear concerns about the potential impacts of anthropogenic noise.


Assuntos
Audição , Nephropidae , Animais , Limiar Auditivo , Potenciais Evocados Auditivos , Feminino , Masculino , Som
13.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190353, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862812

RESUMO

Climate changes in the Arctic may weaken the currently tight pelagic-benthic coupling. In response to decreasing sea ice cover, arctic marine systems are expected to shift from a 'sea-ice algae-benthos' to a 'phytoplankton-zooplankton' dominance. We used mollusc shells as bioarchives and fatty acid trophic markers to estimate the effects of the reduction of sea ice cover on the food exported to the seafloor. Bathyal bivalve Astarte moerchi living at 600 m depth in northern Baffin Bay reveals a clear shift in growth variations and Ba/Ca ratios since the late 1970s, which we relate to a change in food availability. Tissue fatty acid compositions show that this species feeds mainly on microalgae exported from the euphotic zone to the seabed. We, therefore, suggest that changes in pelagic-benthic coupling are likely due either to local changes in sea ice dynamics, mediated through bottom-up regulation exerted by sea ice on phytoplankton production, or to a mismatch between phytoplankton bloom and zooplankton grazing due to phenological change. Both possibilities allow a more regular and increased transfer of food to the seabed. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Exoesqueleto/anatomia & histologia , Bivalves/anatomia & histologia , Ecossistema , Exoesqueleto/química , Exoesqueleto/crescimento & desenvolvimento , Animais , Regiões Árticas , Bário/análise , Bivalves/química , Bivalves/crescimento & desenvolvimento , Cálcio/análise , Mudança Climática/história , Ácidos Graxos/análise , Cadeia Alimentar , História do Século XX , História do Século XXI , Camada de Gelo , Fitoplâncton/crescimento & desenvolvimento , Datação Radiométrica , Estações do Ano , Zooplâncton/crescimento & desenvolvimento
14.
Mar Environ Res ; 159: 104958, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32662447

RESUMO

The goal of clean renewable energy production has promoted the large-scale deployment of marine renewable energy devices, and their associated submarine cable network. Power cables produce both electric and magnetic fields that raise environmental concerns as many marine organisms have magneto and electroreception abilities used for vital purposes. Magnetic and electric fields' intensities decrease with distance away from the cable. Accordingly, the benthic and the sedimentary compartments are exposed to the highest field values. Although marine invertebrate species are the major fauna of these potentially exposed areas, they have so far received little attention. We provide extensive background knowledge on natural and anthropogenic marine sources of magnetic and electric fields. We then compile evidence for magneto- and electro-sensitivity in marine invertebrates and further highlight what is currently known about their interactions with artificial sources of magnetic and electric fields. Finally we discuss the main gaps and future challenges that require further investigation.


Assuntos
Invertebrados , Campos Magnéticos , Navios , Animais , Organismos Aquáticos , Energia Renovável
15.
Sci Rep ; 10(1): 7943, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439882

RESUMO

The detection ranges of broadband sounds produced by marine invertebrates are not known. To address this deficiency, a linear array of hydrophones was built in a shallow water area to experimentally investigate the propagation features of the sounds from various sizes of European spiny lobsters (Palinurus elephas), recorded between 0.5 and 100 m from the animals. The peak-to-peak source levels (SL, measured at one meter from the animals) varied significantly with body size, the largest spiny lobsters producing SL up to 167 dB re 1 µPa2. The sound propagation and its attenuation with the distance were quantified using the array. This permitted estimation of the detection ranges of spiny lobster sounds. Under the high ambient noise conditions recorded in this study, the sounds propagated between 5 and 410 m for the smallest and largest spiny lobsters, respectively. Considering lower ambient noise levels and different realistic propagation conditions, spiny lobster sounds can be detectable up to several kilometres away from the animals, with sounds from the largest individuals propagating over 3 km. Our results demonstrate that sounds produced by P. elephas can be utilized in passive acoustic programs to monitor and survey this vulnerable species at kilometre scale in coastal waters.


Assuntos
Comunicação Animal , Palinuridae/fisiologia , Animais , Comportamento Animal , Ruído , Som
16.
Mar Environ Res ; 158: 104943, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32217294

RESUMO

Saint-Pierre and Miquelon (SPM) is a small archipelago where instrumental measures based on water column velocity and temperature profiles compiled comprehensive evidence for strong near-diurnal (25.8h) current and bottom temperature oscillations (up to 11.5 °C) which is possibly the largest ever observed - at any frequency - on a stratified mid-latitude continental shelf. The main objective of our study was to identify if Placopecten magellanicus can record on its shell these high frequency environmental variations. To this end, we have tried to identify proxies for water temperature and food availability through development of a new ultra-high resolution LA-ICPMS analyses method capable of resolving shell surface elemental composition with a 10 µm resolution. This method was applied on two shell fragments, both representing the third year of growth and 2015 annual growth period, respectively coming from two environmentally contrasted sites, more (30 m depth) or less (10 m depth) affected by high frequency thermal oscillations. Our results strongly suggest a relationship between phytoplankton biomass and barium incorporation into P. magellanicus shells at both sites. Even if P. magellanicus might present a physiological control of magnesium incorporation, the shape of the two Mg/Ca profiles seems to illustrate that temperature also exerts a control on magnesium incorporation in P. magellanicus shells from SPM. While U/Ca and Mg/Ca profiles show a strong positive correlation for 30 m site shell, suggesting that uranium incorporation in P. magellanicus shell is at least partially temperature dependent. The absence of such correlation for 10 m site shell suggests differences in uranium environmental availability or in P. magellanicus biomineralization between these two sites. The resolution of this new analytical method raises questions about such data interpretation related to P. magellanicus growth dynamics and physiology or individual scale based environmental measurements.


Assuntos
Bivalves , Pectinidae , Oligoelementos , Exoesqueleto , Animais , Bivalves/química , Temperatura , Água
17.
J Exp Biol ; 223(Pt 4)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31953362

RESUMO

Previous studies have demonstrated that male European lobsters (Homarus gammarus) use chemical and visual signals as a means of intraspecific communication during agonistic encounters. In this study, we show that they also produce buzzing sounds during these encounters. This result was missed in earlier studies because low-frequency buzzing sounds are highly attenuated in tanks, and are thus difficult to detect with hydrophones. To address this issue, we designed a behavioural tank experiment using hydrophones, with accelerometers placed on the lobsters to directly detect their carapace vibrations (i.e. the sources of the buzzing sounds). While we found that both dominant and submissive individuals produced carapace vibrations during every agonistic encounter, very few of the associated buzzing sounds (15%) were recorded by the hydrophones. This difference is explained by their high attenuation in tanks. We then used the method of algorithmic complexity to analyse the carapace vibration sequences as call-and-response signals between dominant and submissive individuals. Even though some intriguing patterns appeared for closely size-matched pairs (<5 mm carapace length difference), the results of the analysis did not permit us to infer that the processes underlying these sequences could be differentiated from random ones. Thus, such results prevented any conclusions about acoustic communication. This concurs with both the high attenuation of the buzzing sounds during the experiments and the poor understanding of acoustic perception by lobsters. New approaches that circumvent tank acoustic issues are now required to validate the existence of acoustic communication in lobsters.


Assuntos
Comportamento Agonístico/fisiologia , Comunicação Animal , Nephropidae/fisiologia , Acústica , Exoesqueleto/fisiologia , Animais , Masculino , Vibração
18.
Sci Rep ; 9(1): 8015, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142781

RESUMO

Gadolinium-based contrast agents (GBCAs), routinely used in magnetic resonance imaging (MRI), end up directly in coastal seawaters where gadolinium concentrations are now increasing. Because many aquatic species could be sensitive to this new pollution, we have evaluated the possibility of using shellfish to assess its importance. Gadolinium excesses recorded by scallop shells collected in Bay of Brest (Brittany, France) for more than 30 years do not reflect the overall consumption in GBCAs, but are largely controlled by one of them, the gadopentetate dimeglumine. Although its use has been greatly reduced in Europe over the last ten years, gadolinium excesses are still measured in shells. Thus, some gadolinium derived from other GBCAs is bioavailable and could have an impact on marine wildlife.


Assuntos
Meios de Contraste/análise , Monitoramento Ambiental/métodos , Gadolínio DTPA/análise , Pectinidae/química , Água do Mar/química , Poluentes Químicos da Água/análise , Exoesqueleto/química , Animais , Meios de Contraste/química , Meios de Contraste/toxicidade , Poluição Ambiental/prevenção & controle , França , Gadolínio DTPA/toxicidade , Imageamento por Ressonância Magnética/métodos , Pectinidae/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
19.
PLoS One ; 13(6): e0199212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902260

RESUMO

The Atlantic surfclam (Spisula solidissima) is a commercially important species in North American waters, undergoing biological and ecological shifts. These are attributed, in part, to environmental modifications in its habitat and driven by climate change. Investigation of shell growth patterns, trace elements, and isotopic compositions require an examination of growth lines and increments preserved in biogenic carbonates. However, growth pattern analysis of S. solidissima is challenging due to multiple disturbance lines caused by environmental stress, erosion in umbonal shell regions, and constraints related to sample size and preparation techniques. The present study proposes an alternative method for describing chronology. First, we analyzed growth patterns using growth lines within the shell and hinge. To validate the assumption of annual periodicity of growth line formation, we analyzed the oxygen isotope composition of the outer shell layer of two specimens (46°54'20"N; 56°18'58"W). Maximum δ18Oshell values occurred at the exact same location as internal growth lines in both specimens, confirming that they are formed annually and that growth ceases during winter. Next, we used growth increment width data to build a standardized growth index (SGI) time-series (25-year chronology) for each of the three parts of the shell. Highly significant correlations were found between the three SGI chronologies (p < 0.001; 0.55 < τ < 0.68) of all specimens. Thus, ligament growth lines provide a new method of determining ontogenetic age and growth rate in S. solidissima. In a biogeographic approach, the shell growth performance of S. solidissima in Saint-Pierre and Miquelon was compared to those in other populations along its distribution range in order to place this population in a temporal and regional context.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Ligamentos/crescimento & desenvolvimento , Oceanos e Mares , Spisula/crescimento & desenvolvimento , Animais , América do Norte , Isótopos de Oxigênio/análise , Spisula/química
20.
PLoS One ; 12(12): e0189782, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261749

RESUMO

A crossdated, replicated, chronology of 114 years (1901-2014) was developed from internal growth increments in the shells of Glycymeris glycymeris samples collected monthly from the Bay of Brest, France. Bivalve sampling was undertaken between 2014 and 2015 using a dredge. In total 401 live specimens and 243 articulated paired valves from dead specimens were collected, of which 38 individuals were used to build the chronology. Chronology strength, assessed as the Expressed Population Signal, was above 0.7 throughout, falling below the generally accepted threshold of 0.85 before 1975 because of reduced sample depth. Significant positive correlations were identified between the shell growth and the annual averages of rainfall (1975-2008; r = 0.34) and inflow from the river Elorn (1989-2009; r = 0.60). A significant negative correlation was identified between shell growth and the annual average salinity (1998-2014; r = -0.62). Analysis of the monthly averages indicates that these correlations are associated with the winter months (November-February) preceding the G. glycymeris growth season suggesting that winter conditions predispose the benthic environment for later shell growth. Concentration of suspended particulate matter within the river in February is also positively correlated with shell growth, leading to the conclusion that food availability is also important to the growth of G. glycymeris in the Bay of Brest. With the addition of principle components analysis, we were able to determine that inflow from the River Elorn, nitrite levels and salinity were the fundamental drivers of G. glycymeris growth and that these environmental parameters were all linked.


Assuntos
Baías , Bivalves/crescimento & desenvolvimento , Rios , Animais , França , Geografia , Análise de Componente Principal , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...