Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 91(10): 1975-1987, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471565

RESUMO

The balance of energetic losses and gains is of paramount importance for understanding and predicting the persistence of populations and ecosystem processes in a rapidly changing world. Previous studies suggested that metabolic rate often increases faster with warming than resource ingestion rate, leading to an energetic mismatch at high temperature. However, little is known about the ecological consequences of this energetic mismatch for population demography and ecosystem functions. Here, we combined laboratory experiments and modelling to investigate the energetic balance of a stream detritivore Gammarus fossarum along a temperature gradient and the consequences for detritivore populations and organic matter decomposition. We experimentally measured the energetic losses (metabolic rate) and supplies (ingestion rate) of Gammarus and we modelled the impact of rising temperatures and changes in Gammarus body size induced by warming on population dynamics and benthic organic matter dynamics in freshwater systems. Our experimental results indicated an energetic mismatch in a Gammarus population where losses via metabolic rate increase faster than supplies via food ingestion with warming, which translated in a decrease in energetic efficiency with temperature rising from 5 to 20°C. Moreover, our consumer-resource model predicts a decrease in the biomass of Gammarus population with warming, associated with lower maximum abundances and steeper abundance decreases after biomass annual peaks. These changes resulted in a decrease in leaf litter decomposition rate and thus longer persistence of leaf litter standing stock over years in the simulations. In addition, Gammarus body size reductions led to shorter persistence for both leaf litter and Gammarus biomasses at low temperature and the opposite trend at high temperature, revealing that body size reduction was weakening the effect of temperature on resource and consumer persistence. Our model contributes to identifying the mechanisms that explain how thermal effects at the level of individuals may cascade through trophic interactions and influence important ecosystem processes. Considering the balance of physiological processes is crucial to improve our ability to predict the impact of climate change on carbon stocks and ecosystem functions.


Assuntos
Ecossistema , Folhas de Planta , Animais , Carbono/metabolismo , Mudança Climática , Rios
2.
Environ Sci Pollut Res Int ; 29(20): 29296-29313, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34647214

RESUMO

Freshwater contamination by pesticides in agricultural landscapes is of increasing concern worldwide, with strong pesticide impacts on biodiversity, ecosystem functions, and ultimately human health (drinking water, fishing). In addition, the excessively large number of substances, as well as their low - and temporally variable - concentrations in water, make the chemical monitoring by grab sampling very demanding and not fully representative of the actual contamination. Tools that integrate temporal variations and that are ecologically relevant are clearly needed to improve the monitoring of freshwater contamination and assess its biological effects. Here, we studied pesticide contamination and its biological impacts in 10 stream sections (sites) belonging to 3 agricultural catchments in France. In each site, we deployed a combination of pesticide integrative samplers, biocenotic indicators based on benthic macroinvertebrates, and functional indicators based on leaf litter decomposition and associated fungal communities. The 3 approaches largely proved complementary: structural and functional indicators did not respond equally to different agricultural impacts such as pesticide contamination (as revealed by integrative samplers), nutrients, or oxygen depletion. Combining chemical, structural, and functional indicators thus seems an excellent strategy to provide a comprehensive picture of agricultural impacts on stream ecosystems.


Assuntos
Praguicidas , Poluentes Químicos da Água , Efeitos Antropogênicos , Ecossistema , Monitoramento Ambiental , Humanos , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise
3.
Nat Commun ; 12(1): 3700, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140471

RESUMO

The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.


Assuntos
Biota , Ecossistema , Rios , Animais , Biodiversidade , Biomassa , Tamanho Corporal , Chironomidae/fisiologia , Clima , Ephemeroptera/fisiologia , Insetos/fisiologia , Folhas de Planta/química , Floresta Úmida , Rios/química , Rios/microbiologia , Rios/parasitologia , Rios/virologia , Clima Tropical , Tundra
4.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771867

RESUMO

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

5.
Microb Ecol ; 77(4): 959-966, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30899980

RESUMO

Rates of leaf litter decomposition in streams are strongly influenced both by inorganic nutrients dissolved in stream water and by litter traits such as lignin, nitrogen (N) and phosphorus (P) concentrations. As a result, decomposition rates of different leaf species can show contrasting responses to stream nutrient enrichment resulting from human activities. It is unclear, however, whether the root cause of such discrepancies in field observations is the interspecific variation in either litter nutrient or litter lignin concentrations. To address this question, we conducted a controlled laboratory experiment with a known fungal community to determine decomposition rates of 38 leaf species exhibiting contrasting litter traits (N, P and lignin concentrations), which were exposed to 8 levels of dissolved N concentrations representative of field conditions across European streams (0.07 to 8.96 mg N L-1). The effect of N enrichment on decomposition rate was modelled using Monod kinetics to quantify N effects across litter species. Lignin concentration was the most important litter trait determining decomposition rates and their response to N enrichment. In particular, increasing dissolved N supply from 0.1 to 3.0 mg N L-1 accelerated the decomposition of lignin-poor litter (e.g. < 10% of lignin, 2.9× increase ± 1.4 SD, n = 14) more strongly than that of litter rich in lignin (e.g. > 15% of lignin, 1.4× increase ± 0.2 SD, n = 9). Litter nutrient concentrations were less important, with a slight positive effect of P on decomposition rates and no effect of litter N. These results indicate that shifts in riparian vegetation towards species characterized by high litter lignin concentrations could alleviate the stimulation of C turnover by stream nutrient enrichment.


Assuntos
Fungos/fisiologia , Microbiota , Nitrogênio/metabolismo , Folhas de Planta/microbiologia , Rios/microbiologia
6.
Sci Total Environ ; 661: 306-315, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30677678

RESUMO

Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiversity and biogeochemical processes. Here we report on the first large-scale study of biodiversity of leaf-litter fungi in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal communities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S. Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community composition of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is critical to unravel the global patterns of aquatic fungal diversity.


Assuntos
Fungos , Microbiota , Rios/microbiologia , Folhas de Planta/microbiologia , Análise Espacial
7.
Sci Adv ; 5(1): eaav0486, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30662951

RESUMO

River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.


Assuntos
Ciclo do Carbono/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Rios/microbiologia , Temperatura , Atividades Humanas , Humanos
8.
Mycologia ; 111(1): 177-189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30640580

RESUMO

Protein fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI--TOF MS) is a rapid, reliable, and economical method to characterize isolates of terrestrial fungi and other microorganisms. The objective of our study was to evaluate the suitability of MALDI-TOF MS for the identification of aquatic hyphomycetes, a polyphyletic group of fungi that play crucial roles in stream ecosystems. To this end, we used 34 isolates of 21 aquatic hyphomycete species whose identity was confirmed by spore morphology and internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) nuc rDNA sequencing. We tested the efficiency of three protein extraction methods, including chemical and mechanical treatments using 13 different protocols, with the objective of producing high-quality MALDI-TOF mass spectra. In addition to extraction protocols, mycelium age was identified as a key parameter affecting protein extraction efficiency. The dendrogram based on mass-spectrum similarity indicated good and relevant taxonomic discrimination; the tree structure was comparable to that of the phylogram based on ITS sequences. Consequently, MALDI-TOF MS could reliably identify the isolates studied and provided greater taxonomic accuracy than classical morphological methods. MALDI-TOF MS seems suited for rapid characterization and identification of aquatic hyphomycete species.


Assuntos
Proteínas Fúngicas/análise , Fungos Mitospóricos/classificação , Filogenia , Microbiologia da Água , Análise por Conglomerados , França , Fungos Mitospóricos/química , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Sci Rep ; 7(1): 10562, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874830

RESUMO

Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.


Assuntos
Ecossistema , Folhas de Planta/metabolismo , Plantas/metabolismo , Rios , Clima Tropical , Nitrogênio/metabolismo , Fósforo/metabolismo
10.
Water Res ; 115: 60-73, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259815

RESUMO

Physical habitat degradation is prevalent in river ecosystems. Although still little is known about the ecological consequences of altered hydromorphology, understanding the factors at play can contribute to sustainable environmental management. In this study we aimed to identify the hydromorphological features controlling a key ecosystem function and the spatial scales where such linkages operate. As hydromorphological and chemical pressures often occur in parallel, we examined the relative importance of hydromorphological and chemical factors as determinants of leaf breakdown. Leaf breakdown assays were investigated at 82 sites of rivers throughout the French territory. Leaf breakdown data were then crossed with data on water quality and with a multi-scale hydromorphological assessment (i.e. upstream catchment, river segment, reach and habitat) when quantitative data were available. Microbial and total leaf breakdown rates exhibited differential responses to both hydromorphological and chemical alterations. Relationships between the chemical quality of the water and leaf breakdown were weak, while hydromorphological integrity explained independently up to 84.2% of leaf breakdown. Hydrological and morphological parameters were the main predictors of microbial leaf breakdown, whereas hydrological parameters had a major effect on total leaf breakdown, particularly at large scales, while morphological parameters were important at smaller scales. Microbial leaf breakdown were best predicted by hydromorphological features defined at the upstream catchment level whereas total leaf breakdown were best predicted by reach and habitat level geomorphic variables. This study demonstrates the use of leaf breakdown in a biomonitoring context and the importance of hydromorphological integrity for the functioning of running water. It provides new insights for environmental decision-makers to identify the management and restoration actions that have to be undertaken including the hydromorphogical features that should be kept in minimal maintenance to support leaf breakdown.


Assuntos
Ecossistema , Rios , Ecologia , Monitoramento Ambiental , Qualidade da Água
11.
Sci Total Environ ; 562: 596-603, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27110974

RESUMO

The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15µGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29µGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150µGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes.


Assuntos
Biodegradação Ambiental/efeitos da radiação , Acidente Nuclear de Chernobyl , Florestas , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Folhas de Planta , Solo/química , Árvores
12.
Proc Biol Sci ; 283(1829)2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122551

RESUMO

Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.


Assuntos
Biodegradação Ambiental , Plantas , Rios , Biodiversidade , Biota , Ciclo do Carbono , Clima , Ecossistema , Concentração de Íons de Hidrogênio , Filogenia
13.
Nanotoxicology ; 10(2): 245-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26152687

RESUMO

The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8 ± 14.1 mg Ce/kg). Mortality (35.3 ± 6.8%) and a mean Ce concentration of 13.5 ± 3.9 mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism's interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.


Assuntos
Cério/toxicidade , Ecotoxicologia/métodos , Cadeia Alimentar , Água Doce/microbiologia , Nanopartículas/toxicidade , Animais , Bactérias/efeitos dos fármacos , Biomassa , Cério/química , Chironomidae/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Larva/efeitos dos fármacos , Nanopartículas/química , Pleurodeles
14.
Biol Rev Camb Philos Soc ; 90(3): 669-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24935280

RESUMO

The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human-induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem-level process in forest streams. Here, we present a meta-analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient-enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream-reach scale. By contrast, nutrient enrichment at the litter-bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co-limitation of decomposition in streams. The magnitude of the nutrient-enrichment effect on litter decomposition was higher for wood than for leaves, and for low-quality than for high-quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta-analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low-quality plant litter inputs.


Assuntos
Ecossistema , Folhas de Planta/metabolismo , Rios , Animais , Invertebrados/metabolismo
15.
Oecologia ; 176(1): 225-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24938833

RESUMO

During past decades, several mechanisms such as resource quality and habitat complexity have been proposed to explain variations in the strength of trophic cascades across ecosystems. In detritus-based headwater streams, litter accumulations constitute both a habitat and a resource for detritivorous macroinvertebrates. Because litter edibility (which promotes trophic cascades) is usually inversely correlated with its structural complexity (which weakens trophic cascades), there is a great scope for stronger trophic cascades in litter accumulations that are dominated by easily degradable litter species. However, it remains unclear how mixing contrasting litter species (conferring both habitat complexity and high quality resource) may influence top-down controls on communities and processes. In enclosures exposed in a second-order stream, we manipulated litter species composition by using two contrasting litter (alder and oak), and the presence-absence of a macroinvertebrate predator (Cordulegaster boltonii larvae), enabling it to effectively exert predation pressure, or not, on detritivores (consumptive versus non-consumptive predation effects). Leaf mass loss, detritivore biomass and community structure were mostly controlled independently by litter identity and mixing and by predator consumption. However, the strength of predator control was mediated by litter quality (stronger on alder), and to a lesser extent by litter mixing (weaker on mixed litter). Refractory litter such as oak leaves may contribute to the structural complexity of the habitat for stream macroinvertebrates, allowing the maintenance of detritivore communities even when strong predation pressure occurs. We suggest that considering the interaction between top-down and bottom-up factors is important when investigating their influence on natural communities and ecosystem processes in detritus-based ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Insetos/fisiologia , Folhas de Planta/metabolismo , Alnus , Análise de Variância , Animais , Biomassa , Larva/fisiologia , Comportamento Predatório/fisiologia , Quercus , Rios/química
16.
Nature ; 509(7499): 218-21, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24805346

RESUMO

The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.


Assuntos
Biodiversidade , Ciclo do Carbono , Ecossistema , Regiões Árticas , Carbono/metabolismo , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Plantas/metabolismo , Clima Tropical
17.
Appl Environ Microbiol ; 80(6): 1949-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24441154

RESUMO

Aquatic hyphomycetes strongly contribute to organic matter dynamics in streams, but their abilities to colonize leaf litter buried in streambed sediments remain unexplored. Here, we conducted field and laboratory experiments (slow-filtration columns and stream-simulating microcosms) to test the following hypotheses: (i) that the hyporheic habitat acting as a physical sieve for spores filters out unsuccessful strategists from a potential species pool, (ii) that decreased pore size in sediments reduces species dispersal efficiency in the interstitial water, and (iii) that the physicochemical conditions prevailing in the hyporheic habitat will influence fungal community structure. Our field study showed that spore abundance and species diversity were consistently reduced in the interstitial water compared with surface water within three differing streams. Significant differences occurred among aquatic hyphomycetes, with dispersal efficiency of filiform-spore species being much higher than those with compact or branched/tetraradiate spores. This pattern was remarkably consistent with those found in laboratory experiments that tested the influence of sediment pore size on spore dispersal in microcosms. Furthermore, leaves inoculated in a stream and incubated in slow-filtration columns exhibited a fungal assemblage dominated by only two species, while five species were codominant on leaves from the stream-simulating microcosms. Results of this study highlight that the hyporheic zone exerts two types of selection pressure on the aquatic hyphomycete community, a physiological stress and a physical screening of the benthic spore pool, both leading to drastic changes in the structure of fungal community.


Assuntos
Biodiversidade , Fungos Mitospóricos/isolamento & purificação , Rios/microbiologia , Contagem de Colônia Microbiana , Fungos Mitospóricos/classificação , Esporos Fúngicos/isolamento & purificação
18.
Environ Microbiol ; 16(7): 2145-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24034166

RESUMO

We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hyphomycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decomposition process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Filogenia , Folhas de Planta/microbiologia , RNA Ribossômico 18S/genética , Alnus/microbiologia , Sequência de Aminoácidos , Ascomicetos/classificação , Basidiomycota/classificação , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Concentração de Íons de Hidrogênio , Consórcios Microbianos/genética , Dados de Sequência Molecular , Rios/microbiologia
19.
Ecology ; 94(7): 1604-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23951720

RESUMO

In detritus-based ecosystems, autochthonous primary production contributes very little to the detritus pool. Yet primary producers may still influence the functioning of these ecosystems through complex interactions with decomposers and detritivores. Recent studies have suggested that, in aquatic systems, small amounts of labile carbon (C) (e.g., producer exudates), could increase the mineralization of more recalcitrant organic-matter pools (e.g., leaf litter). This process, called priming effect, should be exacerbated under low-nutrient conditions and may alter the nature of interactions among microbial groups, from competition under low-nutrient conditions to indirect mutualism under high-nutrient conditions. Theoretical models further predict that primary producers may be competitively excluded when allochthonous C sources enter an ecosystem. In this study, the effects of a benthic diatom on aquatic hyphomycetes, bacteria, and leaf litter decomposition were investigated under two nutrient levels in a factorial microcosm experiment simulating detritus-based, headwater stream ecosystems. Contrary to theoretical expectations, diatoms and decomposers were able to coexist under both nutrient conditions. Under low-nutrient conditions, diatoms increased leaf litter decomposition rate by 20% compared to treatments where they were absent. No effect was observed under high-nutrient conditions. The increase in leaf litter mineralization rate induced a positive feedback on diatom densities. We attribute these results to the priming effect of labile C exudates from primary producers. The presence of diatoms in combination with fungal decomposers also promoted decomposer diversity and, under low-nutrient conditions, led to a significant decrease in leaf litter C:P ratio that could improve secondary production. Results from our microcosm experiment suggest new mechanisms by which primary producers may influence organic matter dynamics even in ecosystems where autochthonous primary production is low.


Assuntos
Diatomáceas , Ecossistema , Folhas de Planta , Rios , Animais , Biomassa , Monitoramento Ambiental , Fungos/fisiologia , Fatores de Tempo
20.
J Anim Ecol ; 82(5): 1042-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23574276

RESUMO

1. Understanding the functional significance of species interactions in ecosystems has become a major challenge as biodiversity declines rapidly worldwide. Ecosystem consequences arising from the loss of diversity either within trophic levels (horizontal diversity) or across trophic levels (vertical diversity) are well documented. However, simultaneous losses of species at different trophic levels may also result in interactive effects, with potentially complex outcomes for ecosystem functioning. 2. Because of logistical constraints, the outcomes of such interactions have been difficult to assess in experiments involving large metazoan species. Here, we take advantage of a detritus-based model system to experimentally assess the consequences of biodiversity change within both horizontal and vertical food-web components on leaf-litter decomposition, a fundamental process in a wide range of ecosystems. 3. Our concurrent manipulation of fungal decomposer diversity (0, 1 or 5 species), detritivore diversity (0, 1 or 3 species), and the presence of predatory fish scent showed that trophic complexity is key to eliciting diversity effects on ecosystem functioning. Specifically, although fungi and detritivores tended to promote decomposition individually, rates were highest in the most complete community where all trophic levels were represented at the highest possible species richness. In part, the effects were trait-mediated, reflected in the contrasting foraging responses of the detritivore species to predator scent. 4. Our results thus highlight the importance of interactive effects of simultaneous species loss within multiple trophic levels on ecosystem functioning. If a common phenomenon, this outcome suggests that functional ecosystem impairment resulting from widespread biodiversity loss could be more severe than inferred from previous experiments confined to varying diversity within single trophic levels.


Assuntos
Organismos Aquáticos/fisiologia , Ascomicetos/fisiologia , Biodiversidade , Ecossistema , Cadeia Alimentar , Invertebrados/fisiologia , Anfípodes/metabolismo , Anfípodes/fisiologia , Animais , Peso Corporal , França , Insetos/metabolismo , Insetos/fisiologia , Folhas de Planta , Quercus , Rios/microbiologia , Truta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...