Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(45): 18347-18358, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37921504

RESUMO

An effective and rational pathway to tune the electronic bandstructure and visible light absorption properties of low-cost organic graphitic carbon nitride (g-C3N4, GCN) photocatalysts is still very challenging. Here, an efficient strategy is validated to tailor the bandstructure of g-C3N4 and C-doping can be regulated by polymerizing melamine with malonic acid, which can greatly extend the photoresponse range to 900 nm. The optimized GCN exhibits an improved photocatalytic hydrogen production rate of 663.6 µmol g-1 h-1 under visible light irradiation and an apparent quantum yield of 11% at 420 nm, which is three times higher than that of traditional bulk g-C3N4. This superior performance is derived from the unique ordered and porous structure of GCN, which effectively improves its light absorption and provides a larger specific surface area. In addition, the introduction of malonic acid into melamine and the subsequent thermal polymerization reaction further optimize the band structure of GCN, extend its light absorption via C-doping, and improve the photoinduced charge separation, resulting in high photocatalytic performance. This strategy provides a novel platform to design highly efficient GCN-based photocatalysts with precisely tunable operation windows and enhanced charge separation.

2.
Dalton Trans ; 52(44): 16249-16260, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37853816

RESUMO

The high gravimetric energy density of hydrogen makes it an ideal chemical fuel to address the issues of fossil fuel depletion and environmental pollution. Even though transition metal sulfides (TMSs) have been extensively investigated as substitutes for noble metals, their effectiveness is still doubtful for practical applications. Herein, we introduce a facile and general strategy to fabricate heterojunctions with CdS nanorods and a multimetallic transition metal sulfide (CoNiMoS4) for enhanced photocatalytic activity. The CdS/CoNiMoS4 heterojunction will serve as a dual-function photocatalyst with enhanced visible light absorption capability offered by CdS and high charge transfer efficiency provided by CoNiMoS4 nanostructures. Moreover, CdS/CoNiMoS4 nanostructures exhibit the best photocatalytic performance to generate H2 with an amount of 31.9 mmol g-1 h-1, with a distinguished stability for over 25 h. This synthetic approach may offer a new strategy to create diverse heterojunctions with Earth-abundant multimetallic components, which may broaden their scope of application in catalysis.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764643

RESUMO

The visible-light-driven photocatalytic degradation of pharmaceutical pollutants in aquatic environments is a promising strategy for addressing water pollution problems. This work highlights the use of bromine-ion-doped layered Aurivillius oxide, Bi2WO6, to synergistically optimize the morphology and increase the formation of active sites on the photocatalyst's surface. The layered Bi2WO6 nanoplates were synthesized by a facile hydrothermal reaction in which bromine (Br-) ions were introduced by adding cetyltrimethylammonium bromide (CTAB)/tetrabutylammonium bromide (TBAB)/potassium bromide (KBr). The as-synthesized Bi2WO6 nanoplates displayed higher photocatalytic tetracycline degradation activity (~83.5%) than the Bi2WO6 microspheres (~48.2%), which were obtained without the addition of Br precursors in the reaction medium. The presence of Br- was verified experimentally, and the newly formed Bi2WO6 developed as nanoplates where the adsorbed Br- ions restricted the multilayer stacking. Considering the significant morphology change, increased specific surface area, and enhanced photocatalytic performance, using a synthesis approach mediated by Br- ions to design layered photocatalysts is expected to be a promising system for advancing water remediation.

4.
J Colloid Interface Sci ; 627: 247-260, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35849858

RESUMO

Indium hydroxide (In(OH)3) and indium oxide (In2O3) have proven to be efficient catalysts for photocatalytic water-splitting reactions to produce hydrogen (H2) and for organic pollutant degradation applications. However, the limited optical absorption features of indium-based nanostructures have restricted their practical applications. In this study, we have successfully designed indium hydroxide- and indium oxide-loaded metal sulfide (cadmium sulfide, CdS) heterostructures as excellent photocatalytic systems for photocatalytic hydrogen evolution and tetracycline hydrochloride pollutant degradation reactions. In this system, In(OH)3 and In2O3 established Type-I and S-scheme heterojunctions, respectively, with CdS, resulting in superior charge separation properties and outstanding photocatalytic activity. Specifically, the rational and appropriate design of the aforementioned indium-based heterostructures promoted the separation of photoexcited charge carriers via Type-I and S-scheme paths. Accordingly, enhanced photocatalytic H2 evolution activities of 9.58 and 14.98 mmol·g-1·h-1 were achieved for CdS-In(OH)3 and CdS-In2O3, respectively. Furthermore, the highest degradation efficiency of CdS-In2O3 was âˆ¼ 90%, which was higher than those of CdS-In(OH)3 (72%) and bare CdS nanorods (51%). Therefore, the results of this study provide an opportunity to enhance the catalytic activities of heterostructured photocatalytic systems by utilizing the strategy of transitioning band structure alignment from the Type-I to the S-scheme.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Hidrogênio/química , Índio/química , Sulfetos/química , Tetraciclina , Água/química
5.
Chemosphere ; 300: 134570, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35421441

RESUMO

Earth abundant metal based plasmonic photocatalysis is one of the most proficient approaches to degrade the emergent organic pollutants in contaminated water. Here, we report that using one-dimensional CdS/zero-dimensional Bi quantum dot (QD) heterostructures (1D/0D CdS/Bi HSs) were obtained via a simple solvothermal reaction. The results specified that the Bi QDs were grown onto CdS NRs through the reduction of Bi3+ ions. The Bi modified CdS HSs were employed as a photocatalyst for pharmaceutical pollutant tetracycline degradation and the optimized sample showed the maximum photocatalytic degradation activity of 90% under visible light radiation within 60 min, which is greater than the pure CdS (52%) under identical conditions. Based on the structural characterizations and degradation efficiency, the obtained CdS/Bi is a promising photocatalyst for the treatment of wastewater which contains emerging pollutants such as organic dyes and pharmaceutical antibiotics during the industrial processes. The boosted photocatalytic degradation efficiency is credited to the doped Bi3+ species; surface plasmon resonance effect that raised from metallic Bi QDs and proficient photoinduced charge carriers separation.


Assuntos
Poluentes Ambientais , Pontos Quânticos , Antibacterianos , Bismuto/química , Catálise , Preparações Farmacêuticas , Tetraciclina
6.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230877

RESUMO

One dimensional (1D) metal sulfide nanostructures are one of the most promising materials for photocatalytic water splitting reactions to produce hydrogen (H2). However, tuning the nanostructural, optical, electrical and chemical properties of metal sulfides is a challenging task for the fabrication of highly efficient photocatalysts. Herein, 1D CdS nanorods (NRs) were synthesized by a facile and low-cost solvothermal method, in which reaction time played a significant role for increasing the length of CdS NRs from 100 nm to several micrometers. It is confirmed that as the length of CdS NR increases, the visible photocatalytic H2 evolution activity also increases and the CdS NR sample obtained at 18 hr. reaction time exhibited the highest H2 evolution activity of 206.07 µmol.g-1.h-1. The higher H2 evolution activity is explained by the improved optical absorption properties, enhanced electronic bandstructure and decreased electron-hole recombination rate.

7.
Nanomaterials (Basel) ; 9(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635334

RESUMO

For efficient electrode development in an electrolysis system, Fe2O3, MnO, and heterojunction Fe2O3-MnO materials were synthesized via a simple sol-gel method. These particles were coated on a Ni-foam (NF) electrode, and the resulting material was used as an electrode to be used during an oxygen evolution reaction (OER). A 1000-cycle OER test in a KOH alkaline electrolyte indicated that the heterojunction Fe2O3-MnO/NF electrode exhibited the most stable and highest OER activity: it exhibited a low overvoltage (n) of 370 mV and a small Tafel slope of 66 mV/dec. X-ray photoelectron spectroscopy indicated that the excellent redox performance contributed to the synergy of Mn and Fe, which enhanced the OER performance of the Fe2O3-MnO/NF electrode. Furthermore, the effective redox reaction of Mn and Fe indicated that the structure maintained stability even under 1000 repeated OER cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...