Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24907, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304787

RESUMO

Momordica charantia, Nigella sativa, and Anethum graveolens are established medicinal plants possessing noted anti-diabetic and anti-obesity properties. However, the molecular mechanisms underscoring their inhibitory effects on pancreatic lipase, α-glucosidase, and HMG-CoA reductase remain unexplored. This study aimed to elucidate the efficacy of various NS, MC, and AG blends in modulating the enzymatic activity of pancreatic lipase, HMG-CoA reductase, and a-glucosidase, utilizing an integrative approach combining in vitro assessments and molecular modeling techniques. A factorial design matrix generated eight distinct concentration combinations of NS, MC, and AG, subsequently subjected to in vitro enzyme inhibition assays. Molecular docking analyses using AutoDock Vina, molecular dynamics simulations, MMPBSA calculations, and principal component analysis, were executed with Gromacs to discern the interaction dynamics between the compounds and target enzymes. A formulation comprising NS:MC:AG at a 215:50:35 µg/mL ratio yielded significant inhibition of pancreatic lipase (IC50: 74.26 ± 4.27 µg/mL). Moreover, a concentration combination of 215:80:35 µg/mL effectively inhibited both α-glucosidase (IC50: 66.09 ± 3.98 µg/mL) and HMGCR (IC50: 129.03 µg/mL). Notably, MC-derived compounds exhibited superior binding affinity towards all three enzymes, compared to their reference molecules, with diosgenin, Momordicoside I, and diosgenin displaying binding affinities of -11.0, -8.8, and -7.9 kcal/mol with active site residues of pancreatic lipase, α-glucosidase, and HMGCR, respectively. Further, 100 ns molecular dynamics simulations revealed the formation and stabilization of non-bonded interactions between the compounds and the enzymes' active site residues. Through a synergistic application of in vitro and molecular modeling methodologies, this study substantiated the potent inhibitory activity of the NS:MC:AG blend (at a ratio of 215:80:35 µg/mL) and specific MC compounds against pancreatic lipase, α-glucosidase, and HMGCR. These findings provide invaluable insights into the molecular underpinnings of these medicinal plants' anti-diabetic and anti-obesity effects and may guide future therapeutic development.

2.
Mol Divers ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749455

RESUMO

The WHO lists snakebite as a "neglected tropical disease". In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids' Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel ß-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.

3.
J Ethnopharmacol ; 316: 116686, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279812

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Feronia elephantum corr. (synonym: Feronia limonia, Murraya odorata, Schinus Limonia, or Limonia acidissima; common names: Bela, Kath, Billin, and Kavitha), belonging to the family Rutaceae has been known for clinical conditions such as pruritus, diarrhea, impotence, dysentery, heart diseases, and is also used as a liver tonic. However, the effect of the fruit pulp of F. elephantum on insulin resistance has yet not been reported. AIM OF THE STUDY: The present study aimed to assess the effect of hydroalcoholic extract/fraction of F. elephantum fruit pulp on fasting blood glucose, oral glucose tolerance test, and glucose uptake in fructose-induced insulin-resistant rats and predict the gene-set enrichment of lead hits of F. elephantum with targets related to insulin resistance. MATERIAL AND METHODS: System biology tools were used to predict the best category of fraction and propose a possible mechanism. Docking was carried out with adiponectin and its receptor (hub genes). Further, fructose supplementation was used for the induction of insulin resistance. Later, three doses of extract (400, 200, and 100 mg/kg) and a flavonoid-rich fraction (63 mg/kg) were used for treatment along with metformin as standard. The physical parameters like body weight, food intake, and water intake were measured along with oral glucose tolerance test, insulin tolerance test, glycogen content in skeletal muscles and liver, glucose uptake by rat hemidiaphragm, lipid profiles, anti-oxidant biomarkers, and histology of the liver and adipose tissue. RESULTS: Network pharmacology reflected the potency of F. elephantum to regulate adiponectin which may promote the reversal of insulin resistance and inhibit α-amylase and α-glucosidase. Vitexin was predicted to modulate the most genes associated with diabetes mellitus. Further, F. elephantum ameliorated the exogenous glucose clearance, promoted insulin sensitivity, reduced oxidative stress, and improved glucose and lipid metabolism. HPLC profiling revealed the presence of apigenin and quercetin in the extract for the first time. CONCLUSION: The fruit pulp of F. elephantum reverses insulin resistance by an increase in glucose uptake and a decrease in gluconeogenesis which may be due to the regulation of multiple proteins via multiple bio-actives.


Assuntos
Resistência à Insulina , Rutaceae , Masculino , Ratos , Animais , Insulina , Resistência à Insulina/fisiologia , Frutose , Adiponectina , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Glucose , Glicemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...