RESUMO
Extensive use of endocrine disruptor compounds (EDCs) and their release through various pathways into the environment are emerging environmental concerns. In this context, H2O2 and chlorine UV-based treatments were carried out to evaluate their efficiency in the removal of the bisphenol A (BPA), 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2) at 100 µg L-1 from ultrapure water and from wastewater treatment plants (WWTP). Photolysis was performed under different irradiation sources, i.e. UVC and UVA. The effect of H2O2 (3 and 30 mg·L-1), free chlorine concentrations (1 and 2 mg·L-1) and pH (5, 7 and 9) were also investigated. Toxicity (Raphidocelis subcapitata) and estrogenic activity (yeast estrogen screen - YES assay) were assessed during the processes. Compound removal at optimal operating parameters reached 100% after 15 and 2 min for UVC/H2O2 (pH 9 and 3 mg L-1 of H2O2), and UVC/Cl (pH 9 and 2 mg L-1 of chlorine), respectively. Total organic carbon (TOC) removal achieved 37% and 45% for the H2O2 and Cl-UV based process, respectively. The in vitro YES assay indicated that the formed by-products were non-estrogenic compounds, while the toxicity evaluation revealed high cell growth inhibition due to UVC/Cl byproducts. During the UV-based processes, 30 transformation products (TPs) were identified, in which three new chlorinated TPs from E2 and EE2 may be responsible for toxicity effects. EDC degradation by UV/Cl is faster than by UV/H2O2, although chlorinated toxic byproducts were also formed during the UV/Cl process.