Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108009

RESUMO

The rapid development of space technologies and the increase of human presence in space has brought the discussion of the effects of microgravity on cells into the undergraduate classroom. This paper proposes an idea to simulate microgravity on a bacterial culture, suitable for an introductory microbiology laboratory. For this purpose, we show the use of a 2D clinostat designed for microbial studies, along with traditional microbiology techniques such as optical density, plate counts, and biofilm biomass measurement to test the effect of simulated microgravity on the growth of Escherichia coli K12. This exercise aims to facilitate further discussions on the effects of microgravity on bacteria growth and communication, as well as the use of technology to simulate space and predict physiological changes in cells.

2.
Microb Ecol ; 65(1): 214-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22885637

RESUMO

Loliginid and sepiolid squid light organs are known to host a variety of bacterial species from the family Vibrionaceae, yet little is known about the species diversity and characteristics among different host squids. Here we present a broad-ranging molecular and physiological analysis of the bacteria colonizing light organs in loliginid and sepiolid squids from various field locations of the Indo-West Pacific (Australia and Thailand). Our PCR-RFLP analysis, physiological characterization, carbon utilization profiling, and electron microscopy data indicate that loliginid squid in the Indo-West Pacific carry a consortium of bacterial species from the families Vibrionaceae and Photobacteriaceae. This research also confirms our previous report of the presence of Vibrio harveyi as a member of the bacterial population colonizing light organs in loliginid squid. pyrH sequence data were used to confirm isolate identity, and indicates that Vibrio and Photobacterium comprise most of the light organ colonizers of squids from Australia, confirming previous reports for Australian loliginid and sepiolid squids. In addition, combined phylogenetic analysis of PCR-RFLP and 16S rDNA data from Australian and Thai isolates associated both Photobacterium and Vibrio clades with both loliginid and sepiolid strains, providing support that geographical origin does not correlate with their relatedness. These results indicate that both loliginid and sepiolid squids demonstrate symbiont specificity (Vibrionaceae), but their distribution is more likely due to environmental factors that are present during the infection process. This study adds significantly to the growing evidence for complex and dynamic associations in nature and highlights the importance of exploring symbiotic relationships in which non-virulent strains of pathogenic Vibrio species could establish associations with marine invertebrates.


Assuntos
Estruturas Animais/microbiologia , Decapodiformes/microbiologia , Photobacterium/classificação , Simbiose , Vibrio/classificação , Animais , Austrália , Técnicas Bacteriológicas , DNA Bacteriano/genética , Luminescência , Metagenoma , Photobacterium/genética , Photobacterium/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia , Vibrio/genética , Vibrio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...