Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurourol Urodyn ; 39(5): 1321-1329, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374925

RESUMO

BACKGROUND: While numerous studies have confirmed ATP's importance in bladder physiology/pathophysiology, the literature is still conflicted regarding the mechanism of ATP release from the urothelium. Multiple mechanisms have been identified including non-vesicular release via pannexin channels as well as vesicular release via a mechanism blocked by botulinum toxin. Recently, it has been shown that lysosomes contain significant stores of ATP which can be released extracellularly in response to Toll-like receptor (TLR) stimulation. OBJECTIVE: The goal of the current study was to determine if lysosomal exocytosis occurs in urothelial cells in response to TLR4 stimulation by its agonist, bacterial lipopolysaccharide (LPS). MATERIALS AND METHODS: Human urothelial cells from an immortalized cell line (TRT-HU1) were treated with bacterial LPS (100 µg/ml) or the nicotinic agoinist cytisine (100 µM) and extracellular release of ATP and lysosomal acid phosphatase were measured. Pannexin-mediated ATP release and lysosomal ATP release were differentiated using Brilliant Blue FCF to inhibit pannexin channels and glycyl-l-phenylalanine-ß-naphthylamide (GPN) to destroy lysosomes. The mechanisms controlling lysosomal exocytosis were examined using lysosomal pH measurements using LysoSensor dye and intracellular calcium signaling using Fura-2. RESULTS: Stimulation of TRT-HU1 cells with LPS significantly increased ATP release, which was inhibited by GPN, but not by Brilliant Blue FCF. Conversely, stimulation with cytisine induced ATP release that was sensitive to Brilliant Blue FCF but not GPN. LPS stimulation also induced the release of the lysosomal acid phosphatases. LPS increased lysosomal pH and direct alkalization of lysosomal pH using chloroquine or bafilomycin A1 induced ATP and acid phosphatase release, indicating an important role for pH in lysosomal exocytosis. Additionally, stimulation of lysosomal transient receptor potential mucolipin 1 calcium channels evoked intracellular calcium transients as well as ATP release. CONCLUSION: These data indicate that LPS-induced ATP release from urothelial cells is mediated by lysosomal exocytosis, a vesicular mechanism distinctly separate from non-vesicular release via pannexin channels.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Lisossomos/metabolismo , Urotélio/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Urotélio/metabolismo
2.
Biotechnol Prog ; 35(6): e2894, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425633

RESUMO

Real-time monitoring of cell cultures in bioreactors can enable expedited responses necessary to correct potential batch failure perturbations which may normally go undiscovered until the completion of the batch and result in failure. Currently, analytical technologies are dedicated to real-time monitoring of bioreactor parameters such as pH, dissolved oxygen, and temperature, nutrients such as glucose and glutamine, or metabolites such as lactate. Despite the importance of amino acids as the building blocks of therapeutic protein products, other than glutamine their concentrations are not commonly measured. Here, we present a study into amino acid monitoring, supplementation strategies, and how these techniques may impact the cell growth profiles and product quality. We used preliminary bioreactor runs to establish baselines by determining initial amino acid consumption patterns, the results of which were used to select a pool of amino acids which gets depleted in the bioreactor. These amino acids were combined into blends which were supplemented into bioreactors during a subsequent run, the concentrations of which were monitored using a mass spectrometry based at-line method we developed to quickly assess amino acid concentrations from crude bioreactor media. We found that these blends could prolong culture life, reversing a viable cell density decrease that was leading to batch death. Additionally, we assessed how these strategies might impact protein product quality, such as the glycan profile. The amino acid consumption data were aligned with the final glycan profiles in principal component analysis to identify which amino acids are most closely associated with glycan outcomes.


Assuntos
Aminoácidos/metabolismo , Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Animais , Células CHO , Contagem de Células , Cricetulus , Análise de Componente Principal , Fatores de Tempo
3.
Biotechnol Bioeng ; 115(2): 413-422, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29064563

RESUMO

Host cell proteins (HCPs) are a heterogeneous mixture of impurities that should be minimized in bulk preparations of biotechnologically produced medicines. Immunoassays are commonly used to detect and measure HCPs in therapeutic products, and a successful assay is directly dependent on the quality of the polyclonal antibodies (pAbs) used. These pAbs are enriched from antisera of animals immunized with a broad mixture of HCPs, but there is limited information regarding the best strategy for purification of these critical reagents. The use of protein A or protein G affinity chromatography results in purified pAbs that are not entirely HCP-specific, while the use of HCP affinity chromatography results in a more specific pAb population but may be harder to recover fully. In theory, both approaches have advantages and disadvantages for generating optimal reagents. In this study, we compared reagents from these two purification procedures using the same starting material, as well as those from a step-wise combination of the two by evaluating purity, concentration, reagent coverage by Western blotting, and performance in an enzyme-linked immunosorbent assay (ELISA). This study demonstrates that pAbs purified by each of the methods are very similar in terms of sensitivity, the ability to recognize a broad range of HCPs, and overall performance in an ELISA measuring a range of HCPs in upstream process and final drug substance (DS) samples.


Assuntos
Anticorpos/isolamento & purificação , Western Blotting/métodos , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Anticorpos/análise , Anticorpos/química , Biotecnologia , Células CHO , Cricetinae , Cricetulus , Proteínas/química
4.
Biotechnol Prog ; 34(1): 262-270, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29086492

RESUMO

Monoclonal antibody production in commercial scale cell culture bioprocessing requires a thorough understanding of the engineering process and components used throughout manufacturing. It is important to identify high impact components early on during the lifecycle of a biotechnology-derived product. While cell culture media selection is of obvious importance to the health and productivity of mammalian bioreactor operations, other components such as antifoam selection can also play an important role in bioreactor cell culture. Silicone polymer-based antifoams were known to have negative impacts on cell health, production, and downstream filtration and purification operations. High throughput screening in micro-scale bioreactors provides an efficient strategy to identify initial operating parameters. Here, we utilized a micro-scale parallel bioreactor system to study an IgG1 producing CHO cell line, to screen Dynamis, ProCHO5, PowerCHO2, EX-Cell Advanced, and OptiCHO media, and 204, C, EX-Cell, SE-15, and Y-30 antifoams and their impacts on IgG1 production, cell growth, aggregation, and process control. This study found ProCHO5, EX-Cell Advanced, and PowerCHO2 media supported strong cellular growth profiles, with an IVCD of 25-35 × 106 cells-d/mL, while maintaining specific antibody production (Qp > 2 pg/cell-d) for our model cell line and a monomer percentage above 94%. Antifoams C, EX-Cell, and SE-15 were capable of providing adequate control of foaming while antifoam 204 and Y-30 noticeably stunted cellular growth. This work highlights the utility of high throughput micro bioreactors and the importance of identifying both positive and negative impacts of media and antifoam selection on a model IgG1 producing CHO cell line. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:262-270, 2018.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Ensaios de Triagem em Larga Escala/métodos , Imunoglobulina G/biossíntese , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Biotecnologia/métodos , Células CHO , Técnicas de Cultura de Células/métodos , Cricetulus , Imunoglobulina G/imunologia , Polímeros
5.
Biotechnol Prog ; 33(1): 163-170, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27813291

RESUMO

Linkage of upstream cell culture with downstream processing and purification is an aspect of Quality by Design crucial for efficient and consistent production of high quality biopharmaceutical proteins. In a previous Plackett-Burman screening study of parallel bioreactor cultures we evaluated main effects of 11 process variables, such as agitation, sparge rate, feeding regimens, dissolved oxygen set point, inoculation density, supplement addition, temperature, and pH shifts. In this follow-up study, we observed linkages between cell culture process parameters and downstream capture chromatography performance and subsequent antibody attributes. In depth analysis of the capture chromatography purification of harvested cell culture fluid yielded significant effects of upstream process parameters on host cell protein abundance and behavior. A variety of methods were used to characterize the antibody both after purification and buffer formulation. This analysis provided insight in to the significant impacts of upstream process parameters on aggregate formation, impurities, and protein structure. This report highlights the utility of linkage studies in identifying how changes in upstream parameters can impact downstream critical quality attributes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:163-170, 2017.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Cromatografia/métodos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Biotecnologia/métodos , Células CHO , Cricetulus , Concentração de Íons de Hidrogênio , Temperatura
6.
Biomed Res Int ; 2016: 2074149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042659

RESUMO

Formulating appropriate storage conditions for biopharmaceutical proteins is essential for ensuring their stability and thereby their purity, potency, and safety over their shelf-life. Using a model murine IgG3 produced in a bioreactor system, multiple formulation compositions were systematically explored in a DoE design to optimize the stability of a challenging antibody formulation worst case. The stability of the antibody in each buffer formulation was assessed by UV/VIS absorbance at 280 nm and 410 nm and size exclusion high performance liquid chromatography (SEC) to determine overall solubility, opalescence, and aggregate formation, respectively. Upon preliminary testing, acetate was eliminated as a potential storage buffer due to significant visible precipitate formation. An additional 2(4) full factorial DoE was performed that combined the stabilizing effect of arginine with the buffering capacity of histidine. From this final DoE, an optimized formulation of 200 mM arginine, 50 mM histidine, and 100 mM NaCl at a pH of 6.5 was identified to substantially improve stability under long-term storage conditions and after multiple freeze/thaw cycles. Thus, our data highlights the power of DoE based formulation screening approaches even for challenging monoclonal antibody molecules.


Assuntos
Anticorpos Monoclonais/química , Formação de Anticorpos , Imunoglobulina G/química , Animais , Anticorpos Monoclonais/imunologia , Soluções Tampão , Cromatografia Líquida de Alta Pressão , Congelamento , Concentração de Íons de Hidrogênio , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Camundongos , Estabilidade Proteica
7.
J Pharm Sci ; 104(6): 1919-1928, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25762022

RESUMO

Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, ß-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality.


Assuntos
Anticorpos Monoclonais/química , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Hibridomas/metabolismo , Imunoglobulina G/química , Polissacarídeos/química , Animais , Anticorpos Monoclonais/metabolismo , Sequência de Carboidratos , Proliferação de Células , Glicosilação , Hibridomas/química , Hibridomas/citologia , Imunoglobulina G/metabolismo , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...