Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(1): H138-H147, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975707

RESUMO

Patients with chronic kidney disease (CKD) have an exacerbated prevalence of cardiovascular disease (CVD). Vascular dysfunction, characterized by impaired endothelial function and arterial stiffness, and markedly low cardiorespiratory fitness levels are hallmark manifestations of the disease that contribute to the CVD burden. Despite advancements in blood pressure and lipid lowering pharmacological therapies, CVD remains markedly prevalent across the spectrum of CKD. This highlights a stagnation in effective clinical strategies to improve cardiovascular health and reinforces the critical need for adjuvant lifestyle strategies such as physical activity and exercise training to be incorporated into routine clinical care. This narrative review provides an overview of the known effects of exercise on vascular and cardiopulmonary function across the spectrum of CKD. The physiological mechanisms of vascular dysfunction that serve as exercise-specific therapeutic targets are highlighted and future perspectives are discussed.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Rigidez Vascular , Humanos , Terapia por Exercício , Exercício Físico/fisiologia , Insuficiência Renal Crônica/terapia , Pressão Sanguínea
4.
Int J Exerc Sci ; 14(2): 222-229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055150

RESUMO

The purpose of this study was to investigate the influence of acetic acid (apple cider vinegar; ACV) supplementation on resting and exercise energy expenditure and substrate utilization. Using a randomized, double blind, crossover design, 16 healthy subjects were supplemented for 4 d with either ACV (30-ml/d) mixed in 1 L of a non-nutritive lemon-flavored drink or a placebo (PLA). They were then assessed via indirect calorimetry for resting energy expenditure (REE) and substrate utilization. This was immediately followed by the assessment of steady state cycling exercise energy expenditure at 40 W (EEE-40) and 80 W (EEE-80) and substrate utilization. Results: Neither REE nor resting substrate utilization were significantly different between groups (p ≥ .05). During cycling exercise at both 40W and 80W, there were no significant differences observed between groups for energy expenditure (EEE-40: ACV 4.13 ± 0.79, PLA 4.37 ± 0.61 kcal/min; EEE-80: ACV 6.09 ± 0.87, PLA 6.26 ± 0.72 kcal/min) or substrate utilization (40W carbohydrate: ACV 0.72 ± 0.19, PLA 0.76 ± 0.16; fat: ACV 0.15 ± 0.07, PLA 0.16 ± 0.06 g/min), (80W carbohydrate: ACV 1.28 ± 0.32, PLA 1.34 ± 0.35; fat: ACV 0.14 ± 0.10, PLA 0.14 ± 0.10 g/min) (p ≥ .05). Conclusions: Recent findings suggest that chronic acetic acid supplementation is associated with significant reductions in body weight and body fat; however, the findings of the present study suggest that a semi-acute (4 d) acetic acid supplementation does not impact resting or exercise energy expenditure or substrate utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...