Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 241: 109738, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778437

RESUMO

Ethanol (EtOH) exposure during late pregnancy leads to enduring impairments in learning and memory that may stem from damage to components of the posterior limbic memory system, including the retrosplenial cortex (RSC) and anterior thalamic nuclei (ATN). In rodents, binge-like EtOH exposure during the first week of life (equivalent to the third trimester of human pregnancy) triggers apoptosis in these brain regions. We hypothesized that this effect induces long-lasting alterations in the function of RSC-projecting ATN neurons. To test this hypothesis, vesicular GABA transporter-Venus mice (expressing fluorescently tagged GABAergic interneurons) were subjected to binge-like EtOH vapor exposure on postnatal day (P) 7. This paradigm activated caspase 3 in the anterodorsal (AD), anteroventral (AV), and reticular thalamic nuclei at P7 but did not reduce neuronal density in these areas at P60-70. At P40-60, we injected red retrobeads into the RSC and performed patch-clamp slice electrophysiological recordings from retrogradely labeled neurons in the AD and AV nuclei 3-4 days later. We found significant effects of treatment on instantaneous action potential (AP) frequency and AP overshoot, as well as sex × treatment interactions for AP threshold and overshoot in AD neurons. A sex × treatment interaction was detected for AP number in AV neurons. EtOH exposure also reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents and increased the charge transfer of spontaneous inhibitory postsynaptic currents. These results highlight a novel cellular mechanism that could contribute to the lasting learning and memory deficits associated with developmental EtOH exposure.


Assuntos
Núcleos Anteriores do Tálamo , Etanol , Feminino , Humanos , Camundongos , Animais , Gravidez , Etanol/toxicidade , Giro do Cíngulo , Neurônios , Sistema Límbico/fisiologia
2.
Data Brief ; 43: 108355, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35734020

RESUMO

It has been previously shown that 40% of murine cortical interneurons are eliminated via apoptosis during the first two weeks of postnatal development [1], [2], [3]. Here, we report data on the effect of ethanol exposure on this process in a mouse model of binge-like alcohol exposure during last trimester of human pregnancy (equivalent to the first postnatal week in mice). We used transgenic mice that express the Venus fluorescent protein in GABAergic interneurons under the control of the vesicular GABA transporter promoter (VGAT-Venus mice) [4]. Mice were exposed to air (controls) or ethanol for 4 hr/day on postnatal days 4 to 9 using vapor inhalation chambers [5]. This exposure paradigm produces peak blood ethanol concentrations between 300 and 400 mg/dl. Transcardial perfusions were performed under anesthesia at postnatal days 5, 7, 10 and 30. Cryostat-prepared floating sections were stained with the fluorescent DNA dye, 4'6-diamidino-2-phenylindole (DAPI). We then quantified the density of Venus-positive GABAergic interneurons in layers I, II-IV and V of the retrosplenial cortex, which is part of the limbic memory system [6], and is sensitive to ethanol-induced apoptosis during the first postnatal week in mice [7], [8], [9], [10], [11]. The data show that density of interneurons decreases in the retrosplenial cortex layers during the first week of life and that ethanol exposure does not significantly alter this process. These data may be of interest to investigators who are studying the effect of ethanol and other teratogenic agents on developing interneurons in the cerebral cortex.

3.
Alcohol Clin Exp Res ; 46(1): 77-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825395

RESUMO

BACKGROUND: Abnormal diffusion within white matter (WM) tracts has been linked to cognitive impairment in children with fetal alcohol spectrum disorder. Whether changes to myelin organization and structure underlie the observed abnormal diffusion patterns remains unknown. Using a third trimester-equivalent mouse model of alcohol exposure, we previously demonstrated acute loss of oligodendrocyte lineage cells with persistent loss of myelin basic protein and lower fractional anisotropy (FA) in the corpus callosum (CC). Here, we tested whether these WM deficits are accompanied by changes in: (i) axial diffusion (AD) and radial diffusion (RD), (ii) myelin ultrastructure, or (iii) structural components of the node of Ranvier. METHODS: Mouse pups were exposed to alcohol or air vapor for 4 h daily from postnatal day (P)3 to P15 (BEC: 160.4 ± 12.0 mg/dl; range = 128.2 to 185.6 mg/dl). Diffusion tensor imaging (DTI) and histological analyses were performed on brain tissue isolated at P50. Diffusion parameters were measured with Paravision™ 5.1 software (Bruker) following ex vivo scanning in a 7.0 T MRI. Nodes of Ranvier were identified using high-resolution confocal imaging of immunofluorescence for Nav 1.6 (nodes) and Caspr (paranodes) and measured using Imaris™ imaging software (Bitplane). Myelin ultrastructure was evaluated by calculating the G-ratio (axonal diameter/myelinated fiber diameter) on images acquired using transmission electron microscopy. RESULTS: Consistent with our previous study, high resolution DTI at P50 showed lower FA in the CC of alcohol-exposed mice (p = 0.0014). Here, we show that while AD (diffusion parallel to CC axons) was similar between treatment groups (p = 0.30), RD (diffusion perpendicular to CC axons) in alcohol-exposed subjects was significantly higher than in controls (p = 0.0087). In the posterior CC, where we identified the highest degree of abnormal diffusion, node of Ranvier length did not differ between treatment groups (p = 0.41); however, the G-ratio of myelinated axons was significantly higher in alcohol-exposed animals than controls (p = 0.023). CONCLUSIONS: High resolution DTI revealed higher RD at P50 in the CC of alcohol-exposed animals, suggesting less myelination of axons, particularly in the posterior regions. In agreement with these findings, ultrastructural analysis of myelinated axons in the posterior CC showed reduced myelin thickness in alcohol-exposed animals, evidenced by a higher G-ratio.


Assuntos
Etanol/administração & dosagem , Transtornos do Espectro Alcoólico Fetal/patologia , Bainha de Mielina/ultraestrutura , Animais , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Idade Gestacional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/fisiologia , Gravidez , Substância Branca/efeitos dos fármacos , Substância Branca/patologia , Substância Branca/fisiopatologia
4.
Sci Rep ; 11(1): 1716, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462326

RESUMO

Prenatal ethanol exposure causes a variety of cognitive deficits that have a persistent impact on quality of life, some of which may be explained by ethanol-induced alterations in interneuron function. Studies from several laboratories, including our own, have demonstrated that a single binge-like ethanol exposure during the equivalent to the third trimester of human pregnancy leads to acute apoptosis and long-term loss of interneurons in the rodent retrosplenial cortex (RSC). The RSC is interconnected with the hippocampus, thalamus, and other neocortical regions and plays distinct roles in visuospatial processing and storage, as well as retrieval of hippocampal-dependent episodic memories. Here we used slice electrophysiology to characterize the acute effects of ethanol on GABAergic neurotransmission in the RSC of neonatal mice, as well as the long-term effects of neonatal ethanol exposure on parvalbumin-interneuron mediated neurotransmission in adolescent mice. Mice were exposed to ethanol using vapor inhalation chambers. In postnatal day (P) 7 mouse pups, ethanol unexpectedly failed to potentiate GABAA receptor-mediated synaptic transmission. Binge-like ethanol exposure of P7 mice expressing channel rhodopsin in parvalbumin-positive interneurons enhanced the peak amplitudes, asynchronous activity and total charge, while decreasing the rise-times of optically-evoked GABAA receptor-mediated inhibitory postsynaptic currents in adolescent animals. These effects could partially explain the learning and memory deficits that have been documented in adolescent and young adult mice exposed to ethanol during the third trimester-equivalent developmental period.


Assuntos
Etanol/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transmissão Sináptica/efeitos dos fármacos
5.
Neuropharmacology ; 162: 107837, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689422

RESUMO

Exposure to ethanol during the last trimester equivalent of human pregnancy causes apoptotic neurodegeneration in the developing brain, an effect that is thought to be mediated, in part, by inhibition of NMDA receptors. However, NMDA receptors can rapidly adapt to the acute effects of ethanol and are ethanol resistant in some populations of developing neurons. Here, we characterized the effect of ethanol on NMDA and non-NMDA receptor-mediated synaptic transmission in the retrosplenial cortex (RSC), a brain region involved in the integration of different modalities of spatial information that is among the most sensitive regions to ethanol-induced neurodegeneration. A single 4-h exposure to ethanol vapor of 7-day-old transgenic mice that express the Venus fluorescent protein in interneurons triggered extensive apoptosis in the RSC. Slice electrophysiological recordings showed that bath-applied ethanol inhibits NMDA and non-NMDA receptor excitatory postsynaptic currents (EPSCs) in pyramidal neurons and interneurons; however, we found no evidence of acute tolerance development to this effect after the 4-h in-vivo ethanol vapor exposure. Acute bath application of ethanol reduced action potential firing evoked by synaptic stimulation to a greater extent in pyramidal neurons than interneurons. Submaximal inhibition of NMDA EPSCs, but not non-NMDA EPSCs, mimicked the acute effect of ethanol on synaptically-evoked action potential firing. These findings indicate that partial inhibition of NMDA receptors by ethanol has sizable effects on the excitability of glutamatergic and GABAergic neurons in the developing RSC, and suggest that positive allosteric modulators of these receptors could ameliorate ethanol intoxication-induced neurodegeneration during late stages of fetal development.


Assuntos
Apoptose/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Caspase 3/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Interneurônios/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Inibição Neural , Neurônios , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...