Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 203(3)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199286

RESUMO

Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.


Assuntos
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Fenótipo , Transcriptoma , Animais , Antioxidantes , Biofilmes/crescimento & desenvolvimento , Decapodiformes/microbiologia , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Estresse Oxidativo , Simbiose
3.
Folia Microbiol (Praha) ; 61(6): 449-453, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27009592

RESUMO

Multiple symbiotic and free-living Vibrio spp. grow as a form of microbial community known as a biofilm. In the laboratory, methods to quantify Vibrio biofilm mass include crystal violet staining, direct colony-forming unit (CFU) counting, dry biofilm cell mass measurement, and observation of development of wrinkled colonies. Another approach for bacterial biofilms also involves the use of tetrazolium (XTT) assays (used widely in studies of fungi) that are an appropriate measure of metabolic activity and vitality of cells within the biofilm matrix. This study systematically tested five techniques, among which the XTT assay and wrinkled colony measurement provided the most reproducible, accurate, and efficient methods for the quantitative estimation of Vibrionaceae biofilms.


Assuntos
Técnicas Bacteriológicas/métodos , Biofilmes/crescimento & desenvolvimento , Vibrionaceae/fisiologia
4.
Curr Genet ; 62(2): 343-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26762634

RESUMO

The exocyst is an octameric complex that orchestrates the docking and tethering of vesicles to the plasma membrane during exocytosis and is fundamental for key biological processes including growth and establishment of cell polarity. Although components of the exocyst are well conserved among fungi, the specific functions of each component of the exocyst complex unique to Candida albicans biology and pathogenesis are not fully understood. This commentary describes recent findings regarding the role of exocyst subunits Sec6 and Sec15 in C. albicans filamentation and virulence.

5.
BMC Microbiol ; 15: 226, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494154

RESUMO

BACKGROUND: A number of bacterial species are capable of growing in various life history modes that enable their survival and persistence in both planktonic free-living stages as well as in biofilm communities. Mechanisms contributing to either planktonic cell or biofilm persistence and survival can be carefully delineated using multiple differential techniques (e.g., genomics and transcriptomics). In this study, we present both proteomic and metabolomic analyses of Vibrio fischeri biofilms, demonstrating the potential for combined differential studies for elucidating life-history switches important for establishing the mutualism through biofilm formation and host colonization. METHODS: The study used a metabolomics/proteomics or "meta-proteomics" approach, referring to the combined protein and metabolic data analysis that bridges the gap between phenotypic changes (planktonic cell to biofilm formation) with genotypic changes (reflected in protein/metabolic profiles). Our methods used protein shotgun construction, followed by liquid chromatography coupled with mass spectrometry (LC-MS) detection and quantification for both free-living and biofilm forming V. fischeri. RESULTS: We present a time-resolved picture of approximately 100 proteins (2D-PAGE and shotgun proteomics) and 200 metabolites that are present during the transition from planktonic growth to community biofilm formation. Proteins involved in stress response, DNA repair damage, and transport appeared to be highly expressed during the biofilm state. In addition, metabolites detected in biofilms correspond to components of the exopolysaccharide (EPS) matrix (sugars and glycerol-derived). Alterations in metabolic enzymes were paralleled by more pronounced changes in concentration of intermediates from the glycolysis pathway as well as several amino acids. CONCLUSIONS: This combined analysis of both types of information (proteins, metabolites) has provided a more complete picture of the biochemical processes of biofilm formation and what determines the switch between the two life history strategies. The reported findings have broad implications for Vibrio biofilm ecology, and mechanisms for successful survival in the host and environment.


Assuntos
Aliivibrio fischeri/química , Aliivibrio fischeri/fisiologia , Biofilmes/crescimento & desenvolvimento , Metabolômica , Proteômica , Simbiose , Cromatografia Líquida , Espectrometria de Massas
6.
Eukaryot Cell ; 14(12): 1228-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453654

RESUMO

In prior studies of exocyst-mediated late secretion in Candida albicans, we have determined that Sec6 contributes to cell wall integrity, secretion, and filamentation. A conditional mutant lacking SEC6 expression exhibits markedly reduced lateral hyphal branching. In addition, lack of the related t-SNAREs Sso2 and Sec9 also leads to defects in secretion and filamentation. To further understand the role of the exocyst in the fundamental processes of polarized secretion and filamentation in C. albicans, we studied the exocyst subunit Sec15. Since Saccharomyces cerevisiae SEC15 is essential for viability, we generated a C. albicans conditional mutant strain in which SEC15 was placed under the control of a tetracycline-regulated promoter. In the repressed state, cell death occurred after 5 h in the tetR-SEC15 strain. Prior to this time point, the tetR-SEC15 mutant was markedly defective in Sap and lipase secretion and demonstrated increased sensitivity to Zymolyase and chitinase. Notably, tetR-SEC15 mutant hyphae were characterized by a hyperbranching phenotype, in direct contrast to strain tetR-SEC6, which had minimal lateral branching. We further studied the localization of the Spitzenkörper, polarisomes, and exocysts in the tetR-SEC15 and tetR-SEC6 mutants during filamentation. Mlc1-GFP (marking the Spitzenkörper), Spa2-GFP (the polarisome), and Exo70-GFP (exocyst) localizations were normal in the tetR-SEC6 mutant, whereas these structures were mislocalized in the tetR-SEC15 mutant. Following alleviation of gene repression by removing doxycycline, first Spitzenkörper, then polarisome, and finally exocyst localizations were recovered sequentially. These results indicate that the exocyst subunits Sec15 and Sec6 have distinct roles in mediating polarized secretion and filamentation in C. albicans.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades Proteicas/metabolismo , Adesividade/efeitos dos fármacos , Ácido Aspártico Proteases/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitinases/metabolismo , Doxiciclina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Hidrolases/metabolismo , Hifas/efeitos dos fármacos , Hifas/metabolismo , Lipase/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Fenótipo , Tetraciclina/farmacologia
7.
Eukaryot Cell ; 14(7): 684-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002719

RESUMO

The yeast exocyst is a multiprotein complex comprised of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) which orchestrates trafficking of exocytic vesicles to specific docking sites on the plasma membrane during polarized secretion. To study SEC6 function in Candida albicans, we generated a conditional mutant strain in which SEC6 was placed under the control of a tetracycline-regulated promoter. In the repressed state, the tetR-SEC6 mutant strain (denoted tSEC6) was viable for up to 27 h; thus, all phenotypic analyses were performed at 24 h or earlier. Strain tSEC6 under repressing conditions had readily apparent defects in cytokinesis and endocytosis and accumulated both post-Golgi apparatus secretory vesicles and structures suggestive of late endosomes. Strain tSEC6 was markedly defective in secretion of aspartyl proteases and lipases as well as filamentation under repressing conditions. Lack of SEC6 expression resulted in markedly reduced lateral hyphal branching, which requires the establishment of a new axis of polarized secretion. Aberrant localization of chitin at the septum and increased resistance to zymolyase activity were observed, suggesting that C. albicans Sec6 plays an important role in mediating trafficking and delivery of cell wall components. The tSEC6 mutant was also markedly defective in macrophage killing, indicating a role of SEC6 in C. albicans virulence. Taken together, these studies indicate that the late secretory protein Sec6 is required for polarized secretion, hyphal morphogenesis, and the pathogenesis of C. albicans.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Macrófagos/patologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/genética , Candidíase/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Exocitose/fisiologia , Proteínas Fúngicas/genética , Hifas/genética , Hifas/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação/genética , Transporte Proteico , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/genética , Virulência
10.
Antimicrob Agents Chemother ; 58(12): 7501-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288082

RESUMO

Candida albicans is a common cause of catheter-related bloodstream infections (CR-BSI), in part due to its strong propensity to form biofilms. Drug repurposing is an approach that might identify agents that are able to overcome antifungal drug resistance within biofilms. Quinacrine (QNC) is clinically active against the eukaryotic protozoan parasites Plasmodium and Giardia. We sought to investigate the antifungal activity of QNC against C. albicans biofilms. C. albicans biofilms were incubated with QNC at serially increasing concentrations (4 to 2,048 µg/ml) and assessed using a 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay in a static microplate model. Combinations of QNC and standard antifungals were assayed using biofilm checkerboard analyses. To define a mechanism of action, QNC was assessed for the inhibition of filamentation, effects on endocytosis, and pH-dependent activity. High-dose QNC was effective for the prevention and treatment of C. albicans biofilms in vitro. QNC with fluconazole had no interaction, while the combination of QNC and either caspofungin or amphotericin B demonstrated synergy. QNC was most active against planktonic growth at alkaline pH. QNC dramatically inhibited filamentation. QNC accumulated within vacuoles as expected and caused defects in endocytosis. A tetracycline-regulated VMA3 mutant lacking vacuolar ATPase (V-ATPase) function demonstrated increased susceptibility to QNC. These experiments indicate that QNC is active against C. albicans growth in a pH-dependent manner. Although QNC activity is not biofilm specific, QNC is effective in the prevention and treatment of biofilms. QNC antibiofilm activity likely occurs via several independent mechanisms: vacuolar alkalinization, inhibition of endocytosis, and impaired filamentation. Further investigation of QNC for the treatment and prevention of biofilm-related Candida CR-BSI is warranted.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Equinocandinas/farmacologia , Quinacrina/farmacologia , Antiprotozoários/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Caspofungina , Combinação de Medicamentos , Reposicionamento de Medicamentos , Farmacorresistência Fúngica , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Fluconazol/farmacologia , Concentração de Íons de Hidrogênio , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Lipopeptídeos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento
11.
Antimicrob Agents Chemother ; 58(10): 5855-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049253

RESUMO

Candida albicans is the 3rd most common cause of catheter-associated urinary tract infections, with a strong propensity to form drug-resistant catheter-related biofilms. Due to the limited efficacy of available antifungals against biofilms, drug repurposing has been investigated in order to identify novel agents with activities against fungal biofilms. Finasteride is a 5-α-reductase inhibitor commonly used for the treatment of benign prostatic hyperplasia, with activity against human type II and III isoenzymes. We analyzed the Candida Genome Database and identified a C. albicans homolog of type III 5-α-reductase, Dfg10p, which shares 27% sequence identity and 41% similarity to the human type III 5-α-reductase. Thus, we investigated finasteride for activity against C. albicans urinary biofilms, alone and in combination with amphotericin B or fluconazole. Finasteride alone was highly effective in the prevention of C. albicans biofilm formation at doses of ≥16 mg/liter and the treatment of preformed biofilms at doses of ≥128 mg/liter. In biofilm checkerboard analyses, finasteride exhibited synergistic activity in the prevention of biofilm formation in a combination of 4 mg/liter finasteride with 2 mg/liter fluconazole. Finasteride inhibited filamentation, thus suggesting a potential mechanism of action. These results indicate that finasteride alone is highly active in the prevention of C. albicans urinary biofilms in vitro and has synergistic activity in combination with fluconazole. Further investigation of the clinical utility of finasteride in the prevention of urinary candidiasis is warranted.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Finasterida/farmacologia , Fluconazol/farmacologia
12.
PLoS One ; 9(7): e101691, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25014649

RESUMO

Environmentally acquired beneficial associations are comprised of a wide variety of symbiotic species that vary both genetically and phenotypically, and therefore have differential colonization abilities, even when symbionts are of the same species. Strain variation is common among conspecific hosts, where subtle differences can lead to competitive exclusion between closely related strains. One example where symbiont specificity is observed is in the sepiolid squid-Vibrio mutualism, where competitive dominance exists among V. fischeri isolates due to subtle genetic differences between strains. Although key symbiotic loci are responsible for the establishment of this association, the genetic mechanisms that dictate strain specificity are not fully understood. We examined several symbiotic loci (lux-bioluminescence, pil = pili, and msh-mannose sensitive hemagglutinin) from mutualistic V. fischeri strains isolated from two geographically distinct squid host species (Euprymna tasmanica-Australia and E. scolopes-Hawaii) to determine whether slight genetic differences regulated host specificity. Through colonization studies performed in naïve squid hatchlings from both hosts, we found that all loci examined are important for specificity and host recognition. Complementation of null mutations in non-native V. fischeri with loci from the native V. fischeri caused a gain in fitness, resulting in competitive dominance in the non-native host. The competitive ability of these symbiotic loci depended upon the locus tested and the specific squid species in which colonization was measured. Our results demonstrate that multiple bacterial genetic elements can determine V. fischeri strain specificity between two closely related squid hosts, indicating how important genetic variation is for regulating conspecific beneficial interactions that are acquired from the environment.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Simbiose/fisiologia , Animais , Variação Genética/genética , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/fisiologia , Simbiose/genética
13.
FEMS Yeast Res ; 14(5): 762-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24911595

RESUMO

To study the role of late secretion in Candida albicans pathogenesis, we created conditional mutant C. albicans strains in which the t-SNARE-encoding genes SSO2 or SEC9 were placed under the control of a tetracycline-regulated promoter. In repressing conditions, C. albicans tetR-SSO2 and tetR-SEC9 mutant strains were defective in cytokinesis and secretion of aspartyl proteases and lipases. The mutant strains also exhibited a defect in filamentation compared with controls, and thus, we followed the fate of the C. albicans Spitzenkörper, an assembly of secretory vesicles thought to act as a vesicle supply center for the growing hyphae. In the absence of Ca Sso2p, the Spitzenkörper dissipated within 5 h and thin-section electron microscopy revealed an accumulation of secretory vesicles. Moreover, the hyphal tip developed into a globular yeast-like structure rather than maintaining a typical narrow hyphae. These studies indicate that late secretory t-SNARE proteins in C. albicans are required for fundamental cellular processes and contribute to virulence-related attributes of C. albicans pathogenesis. Moreover, these results provide direct evidence for a key role of SNARE proteins in vesicle-mediated polarized hyphal growth of C. albicans.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Citocinese , Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/genética , Proteínas SNARE/metabolismo , Candida albicans/citologia , Microscopia Eletrônica
14.
Int J Antimicrob Agents ; 43(1): 86-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24156913

RESUMO

In a recent high-throughput screen against specific Candida albicans drug targets, several compounds that exhibited non-specific antifungal activity were identified, including the non-steroidal anti-inflammatory drug flufenamic acid (FFA). This study sought to determine the effect of different doses of FFA, alone or in combination with fixed concentrations of the standard antifungal agents amphotericin B (AmB), caspofungin (CAS) or fluconazole (FLU), for the prevention and treatment of C. albicans biofilms. Biofilms were formed in a 96-well microplate followed by evaluation of antifungal activity using the XTT assay. FFA concentrations of ≥512mg/L demonstrated >80% prevention of biofilm formation. FFA concentrations of 1024mg/L demonstrated >85% reduction of mature biofilms. When FFA (≥8mg/L) was used in combination with FLU (32mg/L), antifungal activity increased to 99% for the prevention of biofilm formation. Similarly, when a FFA concentration of ≥8mg/L was used in combination with either AmB (0.25mg/L) or CAS (0.125mg/L), antifungal activity also increased up to 99% for the prevention of biofilm formation. The inhibitory effect of FFA on C. albicans biofilms has not been reported previously, therefore these findings suggest that FFA in combination with traditional antifungals might be useful for the treatment and prevention of C. albicans biofilms.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Ácido Flufenâmico/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
15.
Appl Environ Microbiol ; 79(2): 553-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144127

RESUMO

Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment.


Assuntos
Aliivibrio fischeri/fisiologia , Biofilmes/crescimento & desenvolvimento , Kinetoplastida/fisiologia , Interações Microbianas , Tetrahymena pyriformis/fisiologia , Adaptação Biológica , Animais , Decapodiformes/microbiologia , Decapodiformes/parasitologia , Água do Mar/microbiologia , Água do Mar/parasitologia
16.
FEMS Microbiol Ecol ; 81(3): 562-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22486781

RESUMO

Biofilms are increasingly recognized as being the predominant form for survival for most bacteria in the environment. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. Here, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. The results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms, including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Simbiose , Aliivibrio fischeri/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Decapodiformes/fisiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Flagelos/metabolismo , Genes Reguladores , Mutação , Fatores de Transcrição/metabolismo
17.
J Basic Microbiol ; 51(5): 452-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21656812

RESUMO

Persistence and survival under various environmental stresses has been attributed to the capacity of most bacteria to form biofilms. In aquatic environments, the symbiotic bacterium Vibrio fischeri survives variable abiotic conditions during its free-living stage that dictates its ability to colonize the squid host. In the present study, the influence of different abiotic factors such as salt concentration, temperature, static/dynamic conditions, and carbon source availability were tested to determine whether biofilm formation occurred in 26 symbiotic and free-living V. fischeri strains. Statistical analysis indicate that most strains examined were strong biofilm producers under salinity concentrations that ranged between 1-5%, mesophilic temperatures (25-30 °C) and static conditions. Moreover, free-living strains are generally better biofilm formers than the symbiotically competent ones. Geographical location (strain origin) also correlated with biofilm formation. These findings provide evidence that abiotic growth conditions are important for determining whether mutualistic V. fischeri have the capacity to produce complex biofilms, allowing for increased competency and specificity during symbiosis.


Assuntos
Aliivibrio fischeri/fisiologia , Biofilmes/crescimento & desenvolvimento , Simbiose , Aliivibrio fischeri/isolamento & purificação , Biodiversidade , Salinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...