Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(50): 18663-18671, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38063076

RESUMO

The generation of clean and drinkable fresh water from seawater and contaminated water holds great potential to mitigate water scarcity. Herein, a floating spherical hydrogel evaporator (SHE) is designed to achieve sunlight-driven desalination, self-salt cleaning, and removal of environmental contaminants. The spherical lightweight polystyrene is coated with a porous carbon-embedded sodium alginate/PVA/CMC photothermal hydrogel to generate a spherical hydrogel evaporator (SHE) that floats naturally. The SHE is very sensitive to the weight imbalance (500 mg) and can respond quickly to the accumulation of salt by rotation to the fresh evaporation surface, realizing excellent antisalt fouling performance. Remarkably, with energy localization by porous carbon, the spherical floating evaporator achieved a high evaporation rate of 2.65 kg m-2 h-1 with an evaporation efficiency of 98%. At the same time, SHE is also capable of adsorbing both organic contaminants and heavy metal ions through functional groups of the hydrogel, attaining 99% removal efficiency. Overall, this low-cost spherical floating evaporator may offer solution for eco-friendly and sustainable production of fresh water on a large scale.

3.
ACS Appl Bio Mater ; 6(10): 4314-4325, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37782070

RESUMO

Bacterial infection and the development of antibiotic-resistant bacteria have decreased the effectiveness of traditional antibiotic treatments for wound healing. The design of a multifunctional adhesive hydrogel with antibacterial activity, self-healing properties, and on-demand removability to promote wound healing is highly desirable. In this work, a photothermal cyclodextrin with a NO-releasing moiety has been incorporated within an oxidized sodium alginate conjugated polyacrylamide (OS@PA) hydrogel to get a photothermal NO-releasing GSNOCD-OS@PA hydrogel. Such a multifunctional hydrogel has the unique feature of combined antibacterial activity as a result of a controlled photothermal effect and NO gas release under an 808 near-infrared laser. Because of oxidized sodium alginate (OSA), the hydrogel matrix easily adheres to the skin under twisted and bent states. In vitro cytotoxicity analysis against 3T3 cells showed that the hydrogels OS@PA and GSNOCD-OS@PA are noncytotoxic under laser exposure. The temperature-induced NO release by GSNOCD-OS@PA reached 31.7 mg/L when irradiated with an 808 nm laser for 10 min. The combined photothermal therapy and NO release from GSNOCD-OS@PA effectively reduced viability of both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) to 3 and 5%, respectively. Importantly, the phototherapeutic NO-releasing platform displayed effective fibroblast proliferation in a cell scratch assay.


Assuntos
Adesivos , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Antibacterianos , Cicatrização , Alginatos/farmacologia
4.
Langmuir ; 39(13): 4651-4661, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36971381

RESUMO

Sunlight-driven interfacial photothermal evaporation has been considered as a promising strategy for addressing global water crisis. Herein, we fabricated a self-floating porous triple-layer (CSG@ZFG) evaporator using porous fibrous carbon derived from Saccharum spontaneum (CS) as a photothermal material. The middle layer of the evaporator is composed of hydrophilic sodium alginate crosslinked by carboxymethyl cellulose and zinc ferrite (ZFG), whereas the top hydrophobic layer consists of fibrous (CS) integrated benzaldehyde-modified chitosan gel (CSG). Water is transported to the middle layer through the bottom elastic polyethylene foam using natural jute fiber. Such a strategically designed three-layered evaporator exhibits a broad-band light absorbance (96%), excellent hydrophobicity (120.5°), a high evaporation rate of 1.56 kg m-2 h-1, an energy efficiency of 86%, and outstanding salt mitigation ability under the simulated sunlight of intensity 1 sun. Adding ZnFe2O4 nanoparticle as a photocatalyst has been proved to be capable of restricting the evaporation of volatile organic contaminants (VOCs) like phenol, 4-nitrophenol, and nitrobenzene to ensure the purity of evaporated water. Such an innovatively designed evaporator offers a promising approach for the production of drinking water from wastewater and seawater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...