Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(37): 33349-33357, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157789

RESUMO

This work reports on the potential of polymer brushes (PBs) grown on GaAs substrates (PB-GaAs) as a promising platform for the detection of Legionella pneumophila (Lp). Three functionalization approaches of the GaAs surface were used, and their compatibility with antibodies against Lp was evaluated using Fourier transform infrared spectroscopy and fluorescence microscopy. The incorporation of PBs on GaAs has allowed a significant improvement of the antibody immobilization by increased surface coverage. Bacterial capture experiments demonstrated the promising potential for enhanced immobilization of Lp in comparison with the conventional alkanethiol self-assembled monolayer-based biosensing architectures. Consistent with an eightfold improved capture of bacteria on the surface of a PB-functionalized GaAs/AlGaAs digital photocorrosion biosensor, we report the attractive detection of Lp at 500 CFU/mL.

2.
Biosensors (Basel) ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35735528

RESUMO

Since Legionella pneumophila has caused punctual epidemics through various water systems, the need for a biosensor for fast and accurate detection of pathogenic bacteria in industrial and environmental water has increased. In this report, we evaluated conditions for the capture of live L. pneumophila on a surface by polyclonal antibodies (pAb) and recombinant antibodies (recAb) targeting the bacterial lipopolysaccharide. Using immunoassay and PCR quantification, we demonstrated that, when exposed to live L. pneumophila in PBS or in a mixture containing other non-target bacteria, recAb captured one third fewer L. pneumophila than pAb, but with a 40% lower standard deviation, even when using the same batch of pAb. The presence of other bacteria did not interfere with capture nor increase background by either Ab. Increased reproducibility, as manifested by low standard deviation, is a characteristic that is coveted for biosensing. Hence, the recAb provided a better choice for immune adhesion in biosensors even though it was slightly less sensitive than pAb. Polyclonal or recombinant antibodies can specifically capture large targets such as whole bacteria, and this opens the door to multiple biosensor approaches where any of the components of the bacteria can then be measured for detection or characterisation.


Assuntos
Legionella pneumophila , Imunoensaio , Proteínas Recombinantes , Reprodutibilidade dos Testes , Água , Microbiologia da Água
3.
Biosensors (Basel) ; 11(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067116

RESUMO

A regenerable bulk acoustic wave (BAW) biosensor is developed for the rapid, label-free and selective detection of Escherichia coli in liquid media. The geometry of the biosensor consists of a GaAs membrane coated with a thin film of piezoelectric ZnO on its top surface. A pair of electrodes deposited on the ZnO film allows the generation of BAWs by lateral field excitation. The back surface of the membrane is functionalized with alkanethiol self-assembled monolayers and antibodies against E. coli. The antibody immobilization was investigated as a function of the concentration of antibody suspensions, their pH and incubation time, designed to optimize the immunocapture of bacteria. The performance of the biosensor was evaluated by detection tests in different environments for bacterial suspensions ranging between 103 and 108 CFU/mL. A linear dependence between the frequency response and the logarithm of E. coli concentration was observed for suspensions ranging between 103 and 107 CFU/mL, with the limit of detection of the biosensor estimated at 103 CFU/mL. The 5-fold regeneration and excellent selectivity towards E. coli detected at 104 CFU/mL in a suspension tinted with Bacillus subtilis at 106 CFU/mL illustrate the biosensor potential for the attractive operation in complex biological media.


Assuntos
Técnicas Biossensoriais , Escherichia coli/isolamento & purificação , Som , Anticorpos , Arsenicais , Eletrodos , Gálio , Ouro , Limite de Detecção , Regeneração , Óxido de Zinco
4.
ACS Omega ; 6(11): 7286-7295, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778243

RESUMO

Despite evidence showing that polymer brushes (PBs) are a powerful tool used in biosensing for minimizing nonspecific interactions, allowing for optimization of biosensing performance, and the fact that GaAs semiconductors have proven to have a remarkable potential for sensitive biomolecule detection, the combination of these two robust components has never been considered nor evaluated as a platform for biosensing applications. This work reports different methodologies to prepare and tune PBs on the GaAs interface (PB-GaAs) and their potential as useful platforms for antibody grafting, with the ultimate goal of demonstrating the innovative and attractive character of the PB-GaAs interfaces in the enhanced capture of antibodies and control of nonspecific interactions. Three different functionalization approaches were explored, one "grafting-to" and two "grafting-from," in which atom transfer radical polymerization (ATRP) was performed, followed by their corresponding characterizations. Demonstration of the compatibility of Escherichia coli (E. coli) and Legionella pneumophila (Lp) antibodies with the PB-GaAs platform compared to the results obtained with conventional biosensing architectures developed for GaAs indicates the attractive potential for operation of a sensitive biosensor. Furthermore, these results showed that by carefully choosing the nature and preparation methodology of a PB-GaAs interface, it is possible to effectively tune the affinity of PB-GaAs-based sensors toward E. coli and Lp antibodies ultimately demonstrating the superior specificity of the developed biosensing platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...