Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 40(21): 3428-40, 2001 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18360368

RESUMO

Spaceborne active lidar systems are under development to give new insight into the vertical distribution of clouds and aerosols in the atmosphere and to provide new information on variables required for improvement of forecast models and for understanding the radiative and dynamic processes that are linked to the dynamics of climate change. However, when they are operated from space, lidar systems are limited by atmospheric backscattered signals that have low signal-to-noise ratios (SNRs) on optically thin targets. Therefore specific methods of analysis have to be developed to ensure accurate determination of the geometric and optical properties of scattering layers in the atmosphere. A first approach to retrieving the geometric properties of semitransparent cloud and aerosol layers is presented as a function of false-alarm and no-detection probabilities for a given SNR. Simulations show that the geometric properties of thin cirrus clouds and the altitude of the top of the unstable atmospheric boundary layer can be retrieved with standard deviations smaller than 150 m for a vertical resolution of the lidar system in the 50-100-m range and a SNR of 3. The altitudes of the top of dense clouds are retrieved with a precision in altitude of better than 50 m, as this retrieval corresponds to a higher SNR value. Such methods have an important potential application to future spaceborne lidar missions.

2.
Appl Opt ; 38(33): 6918-26, 1999 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18324235

RESUMO

We used an instrumental synergy of both ground-based (sunphotometer) and spaceborne [POLDER (polarization and directionality of the Earth's reflectances) and Meteosat] passive remote-sensing devices to determine the aerosol optical thickness over the suburban area of Thessaloniki, Greece, from April 1996 to June 1997. The POLDER spaceborne instrument measures the degree of polarization of the solar radiance reflected by the Earth-atmosphere system. Aerosol optical thickness (AOT) retrieval needs an accurate estimate of the contribution of the ground surface to the top of atmosphere's polarized radiance. We tested existing surface reflectance models and fitted their parameters to find the best model for the Thessaloniki area. The model was constrained and validated by use of independent data sets of coincident sunphotometer and POLDER measurements. The comparison indicated that the urban AOT over Thessaloniki was retrieved by the POLDER instrument with an accuracy of +/-0.05. From analysis of Meteosat data we found that approximately 40% of the days with high AOT (>0.18) are associated with African dust transport events, all observed in the period March-July. Excluding dust events, the 15-month AOT averages 0.12 +/- 0.04. During the 15-month period that the study was conducted, we observed aerosol pollution peaks with an AOT of >0.24 on 15 of the 164 days on which measurements were possible.

3.
Appl Opt ; 37(15): 3113-20, 1998 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18273258

RESUMO

Direct determination of the radiative forcing of trace gases will be made possible by use of the next generation of nadir-looking spaceborne instruments that provide measurements of atmospheric radiances in the infrared spectral range with improved spectral and spatial resolution. An inversion statistical method has thus been developed and applied to the direct determination of the radiative forcing of methane, based on such instruments as the Fourier-transform Interferometric Monitor for Greenhouse Gases launched onboard the Japanese Advanced Earth Observing Satellite in 1996 and the Infrared Atmospheric Sounding Interferometer planned for the European polar platform Meteorological Operational Satellite in 2000. The method is based on simple statistical laws that directly relate the measured radiances to the radiative forcing by use of an a priori selection of appropriate spectral intervals and global modeling of methane spatial variations. This procedure avoids the use of an indirect determination based on an inversion process that requires precise knowledge of the methane vertical profiles throughout the troposphere. The overall accuracy and precision of this new algorithm are studied, and interfering gases and instrumental characteristics are taken into account. It is shown that radiative forcing can be determined at high horizontal spatial resolution with a precision better than 7% in cloud-free conditions and with well-known surface properties.

4.
Appl Opt ; 37(33): 7670-9, 1998 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18301603

RESUMO

A preliminary study of the synergism between active and passive spaceborne remote sensing systems has been conducted on the basis of new prospects for the implementation of lidar systems on space platforms for global scale measurements. Assuming a quasi-simultaneity in the measurements performed with an active backscatter lidar and with operational meteorological packages such as the Television Infrared Operational Satellite (TIROS)-N Operational Vertical Sounder radiometers, it is shown that combining both measurements could lead to an improvement in the accuracy of the retrieved vertical temperature profile in the lower troposphere. We used a modified version of the improved initialization inversion operational algorithm, to process the TIROS-N Operational Vertical Sounder data, taking into account the lidar measurements of cloud heights to define a temperature reference. New perspectives for the coupling of lidar and passive radiometers are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...