Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(12): e202301491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916892

RESUMO

To discover more effective antifungal candidates, 33 benzoxazole derivatives, were designed, synthesized, and evaluated for their antifungal activity against seven phytopathogenic fungi by the mycelium growth rate method. Among 33 benzoxazole derivatives had thirteen derivatives no reported, and new derivatives C17 exhibited good inhibitory activity against Phomopsis sp. with EC50 values of 3.26 µM. Structure-activity relationship (SAR) of these derivatives analysis indicated that the substituent played a key role in antifungal activity in ortho-, meta- and para- substituted acetophenones. The preliminary mechanistic exploration demonstrated that C17 might exert its antifungal activity by targeting the mycelia cell membrane, which was verified by the observed changes in mycelial morphology, the formation of extracellular polysaccharides, cellular contents, cell membrane permeability and integrity, among other effects. Furthermore, C17 had potent curative effect against Phomopsis sp. in vivo, which indicated that C17 may be as a novelty potent antifungal agent.


Assuntos
Antifúngicos , Fungos , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Benzoxazóis/farmacologia
2.
Nano Lett ; 19(7): 4551-4559, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241975

RESUMO

With strong spin-orbit coupling (SOC), ultrathin two-dimensional (2D) transitional metal chalcogenides (TMDs) are predicted to exhibit weak antilocalization (WAL) effect at low temperatures. The observation of WAL effect in VSe2 is challenging due to the relative weak SOC and three-dimensional (3D) transport nature in thick VSe2. Here, we report on the observation of quasi-2D transport and WAL effect in sublimed-salt-assisted low-temperature chemical vapor deposition (CVD) grown few-layered high-quality VSe2 nanosheets. The WAL magnitudes in magnetoconductance can be perfectly fitted by the 2D Hikami-Larkin-Nagaoka (HLN) equation in the presence of strong SOC, by which the spin-orbit scattering length lSO and phase coherence length lϕ have been extracted. The phase coherence length lϕ shows a power law dependence with temperature, lϕ∼ T-1/2, revealing an electron-electron interaction-dominated dephasing mechanism. Such sublimed-salt-assisted growth of high-quality few-layered VSe2 and the observation of WAL pave the way for future spintronic and valleytronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...