Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984620

RESUMO

Dietary fiber and polyphenols have been shown to possess antiobesity properties. However, their combined effects need further investigation. This study investigated the individual and combined effects of arabinoxylan oligosaccharides (AXOS) from rice bran and green tea polyphenols (GTP) in high-fat diet-induced obese mice. We found that the combination of AXOS and GTP (A + G) significantly reduced overall fat mass and improved lipid profiles, although the effects were not synergistic. AXOS and GTP regulated lipid metabolism in different tissues and exhibited counteractive effects on gut microbiota. AXOS decreased α diversity and promoted Bifidobacterium, with GTP counteracting these effects. In vitro fermentation confirmed that GTP counteracted AXOS-induced microbiota changes in a dose-dependent manner. This study highlights the potential of tailored combinations of dietary fiber and polyphenols to treat obesity while considering their complex microbial interplay.

2.
Front Microbiol ; 13: 1113601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713199

RESUMO

Introduction: Arabinoxylan (AX) is a versatile polysaccharide that shows various effects in modulating gut microbiota and health. The influence of arabinoxylan carbohydrate structural feature and feruloylation on fermentability and the effect of modulation of gut microbiota of AX was not clear. Methods: Arabinoxylans from rice bran and corn bran (RAX and CAX), and their deferulyolated counterpart dRAX and dCAX were fermented using an in vitro fermentation model. Structural information was determined based on monosaccharide composition. Gas production of fermentation products, SCFAs production, pH change, and microbiota change were measured. Results: RAX and dRAX posessed lower A/X ratio compared with CAX and dCAX. The gas and total SCFAs production were lower in RAX and dRAX, and the butyrate production were higher in RAX and dRAX compared with CAX and dCAX. Butyrate production was lower at dRAX compared to RAX. On the other hand, butyrate production was higher in dCAX than in CAX. The microbiota shift were different for the four fibers. Discussion: The AXs from rice have a higher A/X ratio than the AXs from maize, suggesting more branching and a more complex side chain. The structural difference was crucial for the difference in fermentation pattern. Different Bacteroides species are responsible for the utilization of rice AXs and corn AXs. Although feruloylation had a minor effect on the overall fermentation pattern, it significantly affected butyrate production and alpha diversity. dRAX promoted less butyrate than RAX, which is associated with a significantly lower amount of Faecalibacterium prausnitzi. dCAX promoted more butyrate than CAX, which may be associated with a lower amount of Bacteroides ovatus and a higher amount of Blautia in dCAX compared to CAX. The effects of feruloylation on the fermentation pattern and the resulted microbiota shift of AX varied depending on the carbohydrate structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...