Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547398

RESUMO

The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.


Assuntos
Ilhas Genômicas , Klebsiella pneumoniae , Peptídeos , Policetídeos , Animais , Camundongos , Humanos , Virulência , Klebsiella pneumoniae/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia
2.
J Agric Food Chem ; 69(37): 10774-10789, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34392687

RESUMO

Choline is an essential macronutrient involved in neurotransmitter synthesis, cell-membrane signaling, lipid transport, and methyl-group metabolism. Nevertheless, the vast majority are not meeting the recommended intake requirement. Choline deficiency is linked to nonalcoholic fatty liver disease, skeletal muscle atrophy, and neurodegenerative diseases. The conversion of dietary choline to trimethylamine by gut microbiota is known for its association with atherosclerosis and may contribute to choline deficiency. Choline-utilizing bacteria constitutes less than 1% of the gut community and is modulated by lifestyle interventions such as dietary patterns, antibiotics, and probiotics. In addition, choline utilization is also affected by genetic factors, further complicating the impact of choline on health. This review overviews the complex interplay between dietary intakes of choline, gut microbiota and genetic factors, and the subsequent impact on health. Understanding of gut microbiota metabolism of choline substrates and interindividual variability is warranted in the development of personalized choline nutrition.


Assuntos
Colina , Microbioma Gastrointestinal , Bactérias , Disponibilidade Biológica , Dieta , Metilaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...