Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(13): e16145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001580

RESUMO

The dystrophin protein has well-characterized roles in force transmission and maintaining membrane integrity during muscle contraction. Studies have reported decreased expression of dystrophin in atrophying muscles during wasting conditions, and that restoration of dystrophin can attenuate atrophy, suggesting a role in maintaining muscle mass. Phosphorylation of S3059 within the cysteine-rich region of dystrophin enhances binding between dystrophin and ß-dystroglycan, and mimicking phosphorylation at this site by site-directed mutagenesis attenuates myotube atrophy in vitro. To determine whether dystrophin phosphorylation can attenuate muscle wasting in vivo, CRISPR-Cas9 was used to generate mice with whole body mutations of S3059 to either alanine (DmdS3059A) or glutamate (DmdS3059E), to mimic a loss of, or constitutive phosphorylation of S3059, on all endogenous dystrophin isoforms, respectively. Sciatic nerve transection was performed on these mice to determine whether phosphorylation of dystrophin S3059 could attenuate denervation atrophy. At 14 days post denervation, atrophy of tibialis anterior (TA) but not gastrocnemius or soleus muscles, was partially attenuated in DmdS3059E mice relative to WT mice. Attenuation of atrophy was associated with increased expression of ß-dystroglycan in TA muscles of DmdS3059E mice. Dystrophin S3059 phosphorylation can partially attenuate denervation-induced atrophy, but may have more significant impact in less severe modes of muscle wasting.


Assuntos
Distrofina , Músculo Esquelético , Atrofia Muscular , Animais , Fosforilação , Camundongos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Distrofina/metabolismo , Distrofina/genética , Masculino , Denervação Muscular/métodos , Camundongos Endogâmicos C57BL
2.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602028

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Distrofina , Camundongos Endogâmicos BALB C , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Distrofina/metabolismo , Distrofina/genética , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Camundongos , Éxons/genética , Masculino , Fibrose , Fenótipo
3.
NPJ Precis Oncol ; 8(1): 20, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273040

RESUMO

Utility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive versus BYL719 resistant-cell state. Computational predictions show that signal rewiring to alternative components of the PI3K pathway promote resistance to BYL719 and identify PDK1 as the most effective co-target with PI3Kα rescuing sensitivity of resistant cells to BYL719. To explore whether PI3K pathway-independent mechanisms further contribute to BYL719 resistance, we performed phosphoproteomics and found that selection of high levels of the cell cycle regulator p21 unexpectedly promoted drug resistance in T47D cells. Functionally, high p21 levels favored repair of BYL719-induced DNA damage and bypass of the associated cellular senescence. Importantly, targeted inhibition of the check-point inhibitor CHK1 with MK-8776 effectively caused death of p21-high T47D cells, thus establishing a new vulnerability of BYL719-resistant breast cancer cells. Together, our integrated studies uncover hidden molecular mediators causing resistance to PI3Kα inhibition and provide a framework to prioritize combination therapies for PI3K-mutant breast cancer.

4.
Am J Physiol Cell Physiol ; 320(6): C956-C965, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729835

RESUMO

The dystrophin-glycoprotein complex (DGC) is a multiprotein structure required to maintain muscle fiber membrane integrity, transmit force by linking the actin cytoskeleton with the extracellular matrix, and maintain muscle homeostasis. Membrane localization of dystrophin is perturbed in muscles wasting as a consequence of cancer cachexia, tenotomy, and advanced aging, which are all associated with low level, chronic inflammation. Strategies to preserve dystrophin expression at the sarcolemma might therefore combat muscle wasting. Phosphorylation of dystrophin serine 3059 (S3059) enhances the interaction between dystrophin and ß-dystroglycan. To test the contribution of amino acid phosphorylation to muscle fiber size changes, dystrophin constructs with phospho-null and phosphomimetic mutations were transfected into C2C12 muscle cells or AAV-293 cells in the presence or absence of kinase inhibitors/activators to assess effects on myotube diameter and protein function. Overexpression of a dystrophin construct with a phospho-null mutation at S3059 in vitro reduced myotube size in healthy C2C12 cells. Conversely overexpression of a phosphomimetic mutation at S3059 attenuated inflammation-induced myotube atrophy. Increased ERK activation by addition of phorbol myristate acetate (PMA) also reduced inflammation-associated myotube atrophy and increased the interaction between dystrophin and ß-dystroglycan. These findings demonstrate a link between increased ERK activation, dystrophin S3059 phosphorylation, stabilization of the DGC, and the regulation of muscle fiber size. Interventions that increase dystrophin S3059 phosphorylation to promote stronger binding of dystrophin to ß-dystroglycan may have therapeutic potential for attenuation of inflammation-associated muscle wasting.


Assuntos
Distrofina/metabolismo , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fosforilação/fisiologia , Animais , Caquexia/metabolismo , Membrana Celular/metabolismo , Distroglicanas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcolema/metabolismo
5.
Mol Cell ; 80(2): 279-295.e8, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065020

RESUMO

The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Carcinogênese , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Dexametasona/farmacologia , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos , Modelos Biológicos , Mutação/genética , Organoides/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Estabilidade Proteica , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Sci Rep ; 9(1): 12982, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506484

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive muscle wasting and weakness and premature death. Glucocorticoids (e.g. prednisolone) remain the only drugs with a favorable impact on DMD patients, but not without side effects. We have demonstrated that glycine preserves muscle in various wasting models. Since glycine effectively suppresses the activity of pro-inflammatory macrophages, we investigated the potential of glycine treatment to ameliorate the dystrophic pathology. Dystrophic mdx and dystrophin-utrophin null (dko) mice were treated with glycine or L-alanine (amino acid control) for up to 15 weeks and voluntary running distance (a quality of life marker and strong correlate of lifespan in dko mice) and muscle morphology were assessed. Glycine increased voluntary running distance in mdx mice by 90% (P < 0.05) after 2 weeks and by 60% (P < 0.01) in dko mice co-treated with prednisolone over an 8 week treatment period. Glycine treatment attenuated fibrotic deposition in the diaphragm by 28% (P < 0.05) after 10 weeks in mdx mice and by 22% (P < 0.02) after 14 weeks in dko mice. Glycine treatment augmented the prednisolone-induced reduction in fibrosis in diaphragm muscles of dko mice (23%, P < 0.05) after 8 weeks. Our findings provide strong evidence that glycine supplementation may be a safe, simple and effective adjuvant for improving the efficacy of prednisolone treatment and improving the quality of life for DMD patients.


Assuntos
Modelos Animais de Doenças , Glicinérgicos/administração & dosagem , Glicina/administração & dosagem , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisolona/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
7.
PLoS One ; 14(2): e0212880, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30811469

RESUMO

Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expression is altered in the muscle of aged animals and may contribute to the persistent inflammation and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete muscle repair in aged animals.


Assuntos
Envelhecimento/genética , Deleção de Genes , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tamoxifeno/efeitos adversos , Envelhecimento/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/fisiologia , Fator de Transcrição PAX7/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
8.
Cancer Res ; 79(4): 706-719, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30420474

RESUMO

Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. Cachexia robs patients of their strength and capacity to perform daily tasks and live independently. Effective treatments are needed urgently. Here, we investigated the therapeutic potential of activating the "alternative" axis of the renin-angiotensin system, involving ACE2, angiotensin-(1-7), and the mitochondrial assembly receptor (MasR), for treating cancer cachexia. Plasmid overexpression of the MasR or pharmacologic angiotensin-(1-7)/MasR activation did not affect healthy muscle fiber size in vitro or in vivo but attenuated atrophy induced by coculture with cancer cells in vitro. In mice with cancer cachexia, the MasR agonist AVE 0991 slowed tumor development, reduced weight loss, improved locomotor activity, and attenuated muscle wasting, with the majority of these effects dependent on the orexigenic and not antitumor properties of AVE 0991. Proteomic profiling and IHC revealed that mechanisms underlying AVE 0991 effects on skeletal muscle involved miR-23a-regulated preservation of the fast, glycolytic fibers. MasR activation is a novel regulator of muscle phenotype, and AVE 0991 has orexigenic, anticachectic, and antitumorigenic effects, identifying it as a promising adjunct therapy for cancer and other serious muscle wasting conditions. SIGNIFICANCE: These findings demonstrate that MasR activation has multiple benefits of being orexigenic, anticachectic, and antitumorigenic, revealing it as a potential adjunct therapy for cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/706/F1.large.jpg.See related commentary by Rupert et al., p. 699.


Assuntos
Angiotensina I/metabolismo , Caquexia/prevenção & controle , Carcinoma Ductal Pancreático/prevenção & controle , Atrofia Muscular/prevenção & controle , Neoplasias Pancreáticas/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caquexia/etiologia , Caquexia/patologia , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Proliferação de Células , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Células Tumorais Cultivadas
9.
Skelet Muscle ; 6: 36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27800152

RESUMO

BACKGROUND: Muscles of old animals are injured more easily and regenerate poorly, attributed in part to increased levels of circulating pro-inflammatory cytokines. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade is a key mediator of inflammatory cytokine action, and signaling via this pathway is increased in muscles with aging. As a negative regulator of JAK/STAT signaling, a key mediator of myogenic proliferation and differentiation, altered expression of suppressor of cytokine signaling (SOCS3) is likely to have important consequences for muscle regeneration. To model this scenario, we investigated the effect of SOCS3 deletion within mature muscle fibers on injury and repair. We tested the hypothesis that reduced SOCS3 function would alter the inflammatory response and impair muscle regeneration after myotoxic injury. METHODS: Mice with a specific deletion of SOCS3 within mature skeletal muscle fibers were used to assess the effect of SOCS3 deletion on muscle injury and repair. Twelve-week-old or 24-month-old SOCS3 muscle-specific knockout (SOCS3 MKO) mice and littermate controls were either left uninjured or injured with a single injection of notexin (10 µg/ml) into the right tibialis anterior (TA) muscle. At 1, 2, 3, 5, 7, or 14 days post-injury, the right TA muscle was excised and subjected to histological, western immunoblotting, and gene expression analyses. Force production and fatigue were assessed in uninjured muscles and at 7 days post-notexin injury. RESULTS: In uninjured muscles, SOCS3 deletion decreased force production during fatigue but had no effect on the gross or histological appearance of the TA muscles. After notexin injury, deletion of SOCS3 increased STAT3 phosphorylation at day 1 and increased the mRNA expression of the inflammatory cytokine TNF-α, and the inflammatory cell markers F4/80 and CD68 at day 2. Gene expression analysis of the regeneration markers Pax7, MyoD, and Myogenin indicated SOCS3 deletion had no effect on the progression of muscle repair after notexin injury. Inflammation and regeneration were also unchanged in the muscles of 24-month-old SOCS3 MKO mice compared with control. CONCLUSIONS: Loss of SOCS3 expression in mature muscle fibers increased the inflammatory response to myotoxic injury but did not impair muscle regeneration in either adult or old mice. Therefore, reduced SOCS3 expression in muscle fibers is unlikely to underlie impaired muscle regeneration. Further investigation into the role of SOCS3 in other cell types involved in muscle repair is warranted.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Miosite/metabolismo , Regeneração , Proteína 3 Supressora da Sinalização de Citocinas/fisiologia , Animais , Células Cultivadas , Citocinas/metabolismo , Venenos Elapídicos , Feminino , Janus Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Miosite/induzido quimicamente , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
10.
Growth Horm IGF Res ; 30-31: 1-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27544574

RESUMO

OBJECTIVE: The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. DESIGN: 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. RESULTS: AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. CONCLUSIONS: Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation.


Assuntos
Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Músculo Esquelético/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/genética , Inflamação/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne , Fenótipo , Transcriptoma
11.
Am J Physiol Endocrinol Metab ; 310(11): E970-81, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27094036

RESUMO

Amino acids, especially leucine, potently stimulate protein synthesis and reduce protein breakdown in healthy skeletal muscle and as a result have received considerable attention as potential treatments for muscle wasting. However, the normal anabolic response to amino acids is impaired during muscle-wasting conditions. Although the exact mechanisms of this anabolic resistance are unclear, inflammation and ROS are believed to play a central role. The nonessential amino acid glycine has anti-inflammatory and antioxidant properties and preserves muscle mass in calorie-restricted and tumor-bearing mice. We hypothesized that glycine would restore the normal muscle anabolic response to amino acids under inflammatory conditions. Relative rates of basal and leucine-stimulated protein synthesis were measured using SUnSET methodology 4 h after an injection of 1 mg/kg lipopolysaccharide (LPS). Whereas leucine failed to stimulate muscle protein synthesis in LPS-treated mice pretreated with l-alanine (isonitrogenous control), leucine robustly stimulated protein synthesis (+51%) in mice pretreated with 1 g/kg glycine. The improvement in leucine-stimulated protein synthesis was accompanied by a higher phosphorylation status of mTOR, S6, and 4E-BP1 compared with l-alanine-treated controls. Despite its known anti-inflammatory action in inflammatory cells, glycine did not alter the skeletal muscle inflammatory response to LPS in vivo or in vitro but markedly reduced DHE staining intensity, a marker of oxidative stress, in muscle cross-sections and attenuated LPS-induced wasting in C2C12 myotubes. Our observations in male C57BL/6 mice suggest that glycine may represent a promising nutritional intervention for the attenuation of skeletal muscle wasting.


Assuntos
Glicina/administração & dosagem , Leucina/administração & dosagem , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Miosite/tratamento farmacológico , Miosite/metabolismo , Doença Aguda , Anabolizantes/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Sinergismo Farmacológico , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/biossíntese , Atrofia Muscular/patologia , Miosite/patologia , Resultado do Tratamento
12.
Clin Nutr ; 35(5): 1118-26, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26431812

RESUMO

BACKGROUND & AIM: Calorie restriction (CR) reduces co-morbidities associated with obesity, but also reduces lean mass thereby predisposing people to weight regain. Since we demonstrated that glycine supplementation can reduce inflammation and muscle wasting, we hypothesized that glycine supplementation during CR would preserve muscle mass in mice. METHODS: High-fat fed male C57BL/6 mice underwent 20 days CR (40% reduced calories) supplemented with glycine (1 g/kg/day; n = 15, GLY) or l-alanine (n = 15, ALA). Body composition and glucose tolerance were assessed and hindlimb skeletal muscles and epididymal fat were collected. RESULTS: Eight weeks of a high-fat diet (HFD) induced obesity and glucose intolerance. CR caused rapid weight loss (ALA: 20%, GLY: 21%, P < 0.01), reduced whole-body fat mass (ALA: 41%, GLY: 49% P < 0.01), and restored glucose tolerance to control values in ALA and GLY groups. GLY treated mice lost more whole-body fat mass (14%, p < 0.05) and epididymal fat mass (26%, P < 0.05), less lean mass (27%, P < 0.05), and had better preserved quadriceps muscle mass (4%, P < 0.01) than ALA treated mice after 20 d CR. Compared to the HFD group, pro-inflammatory genes were lower (P < 0.05), metabolic genes higher (P < 0.05) and S6 protein phosphorylation lower after CR, but not different between ALA and GLY groups. There were significant correlations between %initial fat mass (pre CR) and the mRNA expression of genes involved in inflammation (r = 0.51 to 0.68, P < 0.05), protein breakdown (r = -0.66 to -0.37, P < 0.05) and metabolism (r = -0.59 to -0.47, P < 0.05) after CR. CONCLUSION: Taken together, these findings suggest that glycine supplementation during CR may be beneficial for preserving muscle mass and stimulating loss of adipose tissue.


Assuntos
Restrição Calórica , Suplementos Nutricionais , Glicina/administração & dosagem , Obesidade/tratamento farmacológico , Animais , Composição Corporal , Índice de Massa Corporal , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/prevenção & controle , Obesidade/etiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aumento de Peso , Redução de Peso
13.
PLoS One ; 10(10): e0141572, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26513461

RESUMO

Dietary L-citrulline is thought to modulate muscle protein turnover by increasing L-arginine availability. To date, the direct effects of increased L-citrulline concentrations in muscle have been completely neglected. Therefore, we determined the role of L-citrulline in regulating cell size during catabolic conditions by depriving mature C2C12 myotubes of growth factors (serum free; SF) or growth factors and nutrients (HEPES buffered saline; HBS). Cells were treated with L-citrulline or equimolar concentrations of L-arginine (positive control) or L-alanine (negative control) and changes in cell size and protein turnover were assessed. In myotubes incubated in HBS or SF media, L-citrulline improved rates of protein synthesis (HBS: +63%, SF: +37%) and myotube diameter (HBS: +18%, SF: +29%). L-citrulline treatment substantially increased iNOS mRNA expression (SF: 350%, HBS: 750%). The general NOS inhibitor L-NAME and the iNOS specific inhibitor aminoguanidine prevented these effects in both models. Depriving myotubes in SF media of L-arginine or L-leucine, exacerbated wasting which was not attenuated by L-citrulline. The increased iNOS mRNA expression was temporally associated with increases in mRNA of the endogenous antioxidants SOD1, SOD3 and catalase. Furthermore, L-citrulline prevented inflammation (LPS) and oxidative stress (H2O2) induced muscle cell wasting. In conclusion, we demonstrate a novel direct protective effect of L-citrulline on skeletal muscle cell size independent of L-arginine that is mediated through induction of the inducible NOS (iNOS) isoform. This discovery of a nutritional modulator of iNOS mRNA expression in skeletal muscle cells could have substantial implications for the treatment of muscle wasting conditions.


Assuntos
Antioxidantes/farmacologia , Citrulina/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Catalase/genética , Catalase/metabolismo , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
14.
J Nutr ; 145(5): 900-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740910

RESUMO

BACKGROUND: Increasing arginine (Arg) availability reduces atrophy in cultured skeletal muscle cells. Supplementation with its metabolic precursor citrulline (Cit) is more effective at improving skeletal muscle Arg concentrations. OBJECTIVE: We tested the hypothesis that Cit supplementation would attenuate skeletal muscle atrophy and loss of function during hindlimb immobilization in mice. METHODS: Male C57BL/6JArc mice underwent 14 d of unilateral hindlimb immobilization/plaster casting and were supplemented with ~0.81 g Cit · kg⁻¹ · d⁻¹ (CIT group) or Ala (ALA group) mixed into their food. The uncasted contralateral limb (internal control) and an uncasted group (CON) served as controls. Muscle atrophy was evaluated with mass, fiber area, and in situ muscle function. RESULTS: Tibialis anterior (TA) muscle mass [ALA: 37.6 ± 0.92 mg; CIT: 38.3 ± 1.25 mg] and peak tetanic force (ALA: 1150 ± 38.5 mN; CIT: 1150 ± 52.0 mN) were lower (P < 0.001) in the ALA (53.9 ± 0.42 mg) and CIT (1760 ± 28.5 mN) groups than in the CON group. No difference was found between ALA and CIT groups for TA mass, fiber area, or peak force. The mRNA expression of the nitric oxide synthase 2, inducible (Nos2; ~15-fold) and B-cell chronic lymphoid leukemia/lymphoma 2/adenovirus E1B 19 kDa interacting protein 3 (Bnip3; ~17-fold) genes and the ratio of microtubule-associated protein light chain 3BII to 3BI (LC3BII:LC3BI) (50.5% ± 17.7%) were higher (P < 0.05) in the ALA group than in the CON group, suggesting increased autophagy. In the CIT group, Bnip3 mRNA was lower (-70%; P < 0.05) and Nos2 mRNA tended to be lower (-45%; P = 0.05) than in the ALA group, whereas LC3BII:LC3BI was not different from the CON group. CONCLUSIONS: Cit treatment of male mice did not affect therapeutically relevant outcome measures such as skeletal muscle mass and peak muscle force after 14 d of hindlimb immobilization.


Assuntos
Citrulina/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Debilidade Muscular/prevenção & controle , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Animais , Autofagia , Biomarcadores/metabolismo , Citrulina/metabolismo , Fixação de Fratura/efeitos adversos , Regulação da Expressão Gênica , Membro Posterior , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Restrição Física/efeitos adversos
15.
Hum Mol Genet ; 23(25): 6697-711, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25082828

RESUMO

Mutations in dystrophin lead to Duchenne muscular dystrophy, which is among the most common human genetic disorders. Dystrophin nucleates assembly of the dystrophin-glycoprotein complex (DGC), and a defective DGC disrupts an essential link between the intracellular cytoskeleton and the basal lamina, leading to progressive muscle wasting. In vitro studies have suggested that dystrophin phosphorylation may affect interactions with actin or syntrophin, yet whether this occurs in vivo or affects protein function remains unknown. Utilizing nanoflow liquid chromatography mass spectrometry, we identified 18 phosphorylated residues within endogenous dystrophin. Mutagenesis revealed that phosphorylation at S3059 enhances the dystrophin-dystroglycan interaction and 3D modeling utilizing the Rosetta software program provided a structural model for how phosphorylation enhances this interaction. These findings demonstrate that phosphorylation is a key mechanism regulating the interaction between dystrophin and the DGC and reveal that posttranslational modification of a single amino acid directly modulates the function of dystrophin.


Assuntos
Distroglicanas/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Cisteína/química , Cisteína/metabolismo , Distroglicanas/química , Distroglicanas/genética , Distrofina/química , Distrofina/genética , Proteínas Associadas à Distrofina/química , Proteínas Associadas à Distrofina/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mioblastos/citologia , Mioblastos/metabolismo , Fosforilação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/química , Serina/metabolismo , Transdução de Sinais
16.
PLoS One ; 9(7): e101379, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000590

RESUMO

Muscles can be injured in different ways and the trauma and subsequent loss of function and physical capacity can impact significantly on the lives of patients through physical impairments and compromised quality of life. The relative success of muscle repair after injury will largely determine the extent of functional recovery. Unfortunately, regenerative processes are often slow and incomplete, and so developing novel strategies to enhance muscle regeneration is important. While the capacity to enhance muscle repair by stimulating ß2-adrenoceptors (ß-ARs) using ß2-AR agonists (ß2-agonists) has been demonstrated previously, the exact role ß-ARs play in regulating the regenerative process remains unclear. To investigate ß-AR-mediated signaling in muscle regeneration after myotoxic damage, we examined the regenerative capacity of tibialis anterior and extensor digitorum longus muscles from mice lacking either ß1-AR (ß1-KO) and/or ß2-ARs (ß2-KO), testing the hypothesis that muscles from mice lacking the ß2-AR would exhibit impaired functional regeneration after damage compared with muscles from ß1-KO or ß1/ß2-AR null (ß1/ß2-KO) KO mice. At 7 days post-injury, regenerating muscles from ß1/ß2-KO mice produced less force than those of controls but muscles from ß1-KO or ß2-KO mice did not exhibit any delay in functional restoration. Compared with controls, ß1/ß2-KO mice exhibited an enhanced inflammatory response to injury, which delayed early muscle regeneration, but an enhanced myoblast proliferation later during regeneration ensured a similar functional recovery (to controls) by 14 days post-injury. This apparent redundancy in the ß-AR signaling pathway was unexpected and may have important implications for manipulating ß-AR signaling to improve the rate, extent and efficacy of muscle regeneration to enhance functional recovery after injury.


Assuntos
Diferenciação Celular , Músculo Esquelético/fisiologia , Mioblastos/citologia , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Regeneração , Animais , Proliferação de Células , Técnicas de Inativação de Genes , Camundongos , Força Muscular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/citologia , Tamanho do Órgão , Receptores Adrenérgicos beta 1/deficiência , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/genética
17.
PLoS One ; 9(3): e91514, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24626262

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. RESULTS: Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. CONCLUSION: We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen.


Assuntos
Glicogênio/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Distrofina/fisiologia , Intolerância à Glucose , Glicogênio Fosforilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Fenótipo
18.
Fibrogenesis Tissue Repair ; 7(1): 1, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24476069

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilising protein dystrophin. Dystrophic muscle fibres are susceptible to injury and degeneration, and impaired muscle regeneration is associated with fibrotic deposition that limits the efficacy of potential pharmacological, cell- and gene-based therapies. Novel treatments that can prevent or attenuate fibrosis have important clinical merit for DMD and related neuromuscular diseases. We investigated the therapeutic potential for tranilast, an orally bioavailable anti-allergic agent, to prevent fibrosis in skeletal muscles of mdx dystrophic mice. RESULTS: Three-week-old C57Bl/10 and mdx mice received tranilast (~300 mg/kg) in their food for 9 weeks, after which fibrosis was assessed through histological analyses, and functional properties of tibialis anterior muscles were assessed in situ and diaphragm muscle strips in vitro. Tranilast administration did not significantly alter the mass of any muscles in control or mdx mice, but it decreased fibrosis in the severely affected diaphragm muscle by 31% compared with untreated mdx mice (P < 0.05). A similar trend of decreased fibrosis was observed in the tibialis anterior muscles of mdx mice (P = 0.10). These reductions in fibrotic deposition were not associated with improvements in maximum force-producing capacity, but we did observe small but significant improvements in the resistance to fatigue in both the diaphragm and TA muscles of mdx mice treated with tranilast. CONCLUSION: Together these findings demonstrate that administration of potent antifibrotic compounds such as tranilast could help preserve skeletal muscle structure, which could ultimately increase the efficacy of pharmacological, cell and gene replacement/correction therapies for muscular dystrophy and related disorders.

19.
Exp Physiol ; 99(4): 675-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443351

RESUMO

New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the frequency-force relationship in regenerating muscles of C57BL/10 and mdx mice after injury, indicating reduced force at each stimulation frequency, but enhanced the frequency-force relationship in muscles from dko mice. We conclude that while Notch inhibition produces slight functional defects in dystrophic muscle, Notch activation does not significantly improve muscle regeneration in murine models of muscular dystrophy. Furthermore, the inconsistent expression of Notch targets between murine models and DMD patients suggests caution when making interspecies comparisons.


Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Adolescente , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biópsia , Estudos de Casos e Controles , Criança , Pré-Escolar , Modelos Animais de Doenças , Distrofina/deficiência , Distrofina/genética , Venenos Elapídicos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Camundongos Endogâmicos mdx , Camundongos Knockout , Contração Muscular , Desenvolvimento Muscular , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , RNA Mensageiro/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Regeneração , Fatores de Transcrição HES-1 , Utrofina/deficiência , Utrofina/genética , Adulto Jovem
20.
Clin Nutr ; 33(3): 448-58, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23835111

RESUMO

BACKGROUND AND AIMS: The non-essential amino acid, glycine, is often considered biologically neutral, but some studies indicate that it could be an effective anti-inflammatory agent. Since inflammation is central to the development of cancer cachexia, glycine supplementation represents a simple, safe and promising treatment. We tested the hypothesis that glycine supplementation reduces skeletal muscle inflammation and preserves muscle mass in tumor-bearing mice. METHODS: To induce cachexia, CD2F1 mice received a subcutaneous injection of PBS (control, n = 12) or C26 tumor cells (n = 32) in accordance with the protocols developed by Murphy et al. [Murphy KT, Chee A, Trieu J, Naim T, Lynch GS. Importance of functional and metabolic impairments in the characterization of the C-26 murine model of cancer cachexia. Dis Models Mech 2012;5(4):533-545.]. Subcutaneous injections of glycine (n = 16) or PBS (n = 16) were administered daily for 21 days and at the conclusion of treatment, selected muscles, tumor and adipose tissue were collected and prepared for Real-Time RT-PCR or western blot analysis. RESULTS: Glycine attenuated the loss of fat and muscle mass, blunted increases in markers of inflammation (F4/80, P = 0.01 & IL-6 mRNA, P = 0.01) and atrophic signaling (MuRF, P = 0.047; atrogin-1, P = 0.04; LC3B, P = 0.06 and; BNIP3, P = 0.10) and tended to attenuate the loss of body mass (P = 0.07), muscle function (P = 0.06), and oxidative stress (GSSG/GSH, P = 0.06 and DHE, P = 0.07) seen in tumor-bearing mice. Preliminary studies that compared the effect of glycine administration with isonitrogenous doses of alanine or citrulline showed that the observed protective effect was specific to glycine. CONCLUSIONS: Glycine protects skeletal muscle from cancer-induced wasting and loss of function, reduces the oxidative and inflammatory burden, and reduces the expression of genes associated with muscle protein breakdown in cancer cachexia. Importantly, these effects were glycine specific.


Assuntos
Caquexia/tratamento farmacológico , Glicina/farmacologia , Inflamação/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Índice de Massa Corporal , Caquexia/etiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Interferon gama/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular , Neoplasias/complicações , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...