Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(8): 107407, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37609632

RESUMO

Our scoping review provides a comprehensive analysis of the landscape of artificial intelligence (AI) applications in prehospital emergency care (PEC). It contributes to the field by highlighting the most studied AI applications and identifying the most common methodological approaches across 106 included studies. The findings indicate a promising future for AI in PEC, with many unique use cases, such as prognostication, demand prediction, resource optimization, and the Internet of Things continuous monitoring systems. Comparisons with other approaches showed AI outperforming clinicians and non-AI algorithms in most cases. However, most studies were internally validated and retrospective, highlighting the need for rigorous prospective validation of AI applications before implementation in clinical settings. We identified knowledge and methodological gaps using an evidence map, offering a roadmap for future investigators. We also discussed the significance of explainable AI for establishing trust in AI systems among clinicians and facilitating real-world validation of AI models.

2.
Sci Data ; 9(1): 658, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302776

RESUMO

The demand for emergency department (ED) services is increasing across the globe, particularly during the current COVID-19 pandemic. Clinical triage and risk assessment have become increasingly challenging due to the shortage of medical resources and the strain on hospital infrastructure caused by the pandemic. As a result of the widespread use of electronic health records (EHRs), we now have access to a vast amount of clinical data, which allows us to develop prediction models and decision support systems to address these challenges. To date, there is no widely accepted clinical prediction benchmark related to the ED based on large-scale public EHRs. An open-source benchmark data platform would streamline research workflows by eliminating cumbersome data preprocessing, and facilitate comparisons among different studies and methodologies. Based on the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) database, we created a benchmark dataset and proposed three clinical prediction benchmarks. This study provides future researchers with insights, suggestions, and protocols for managing data and developing predictive tools for emergency care.


Assuntos
Benchmarking , COVID-19 , Humanos , Registros Eletrônicos de Saúde , Pandemias , Serviço Hospitalar de Emergência , Aprendizado de Máquina
3.
J Biomed Inform ; 129: 104072, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421602

RESUMO

BACKGROUND: Medical decision-making impacts both individual and public health. Clinical scores are commonly used among various decision-making models to determine the degree of disease deterioration at the bedside. AutoScore was proposed as a useful clinical score generator based on machine learning and a generalized linear model. However, its current framework still leaves room for improvement when addressing unbalanced data of rare events. METHODS: Using machine intelligence approaches, we developed AutoScore-Imbalance, which comprises three components: training dataset optimization, sample weight optimization, and adjusted AutoScore. Baseline techniques for performance comparison included the original AutoScore, full logistic regression, stepwise logistic regression, least absolute shrinkage and selection operator (LASSO), full random forest, and random forest with a reduced number of variables. These models were evaluated based on their area under the curve (AUC) in the receiver operating characteristic analysis and balanced accuracy (i.e., mean value of sensitivity and specificity). By utilizing a publicly accessible dataset from Beth Israel Deaconess Medical Center, we assessed the proposed model and baseline approaches to predict inpatient mortality. RESULTS: AutoScore-Imbalance outperformed baselines in terms of AUC and balanced accuracy. The nine-variable AutoScore-Imbalance sub-model achieved the highest AUC of 0.786 (0.732-0.839), while the eleven-variable original AutoScore obtained an AUC of 0.723 (0.663-0.783), and the logistic regression with 21 variables obtained an AUC of 0.743 (0.685-0.801). The AutoScore-Imbalance sub-model (using a down-sampling algorithm) yielded an AUC of 0.771 (0.718-0.823) with only five variables, demonstrating a good balance between performance and variable sparsity. Furthermore, AutoScore-Imbalance obtained the highest balanced accuracy of 0.757 (0.702-0.805), compared to 0.698 (0.643-0.753) by the original AutoScore and the maximum of 0.720 (0.664-0.769) by other baseline models. CONCLUSIONS: We have developed an interpretable tool to handle clinical data imbalance, presented its structure, and demonstrated its superiority over baselines. The AutoScore-Imbalance tool can be applied to highly unbalanced datasets to gain further insight into rare medical events and facilitate real-world clinical decision-making.


Assuntos
Algoritmos , Aprendizado de Máquina , Tomada de Decisão Clínica , Modelos Logísticos , Curva ROC
4.
PLoS One ; 16(8): e0249868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460853

RESUMO

Sepsis is a potentially life-threatening condition that requires prompt recognition and treatment. Recently, heart rate variability (HRV), a measure of the cardiac autonomic regulation derived from short electrocardiogram tracings, has been found to correlate with sepsis mortality. This paper presents using novel heart rate n-variability (HRnV) measures for sepsis mortality risk prediction and comparing against current mortality prediction scores. This study was a retrospective cohort study on patients presenting to the emergency department of a tertiary hospital in Singapore between September 2014 to April 2017. Patients were included if they were above 21 years old and were suspected of having sepsis by their attending physician. The primary outcome was 30-day in-hospital mortality. Stepwise multivariable logistic regression model was built to predict the outcome, and the results based on 10-fold cross-validation were presented using receiver operating curve analysis. The final predictive model comprised 21 variables, including four vital signs, two HRV parameters, and 15 HRnV parameters. The area under the curve of the model was 0.77 (95% confidence interval 0.70-0.84), outperforming several established clinical scores. The HRnV measures may have the potential to allow for a rapid, objective, and accurate means of patient risk stratification for sepsis severity and mortality. Our exploration of the use of wealthy inherent information obtained from novel HRnV measures could also create a new perspective for data scientists to develop innovative approaches for ECG analysis and risk monitoring.


Assuntos
Serviço Hospitalar de Emergência , Frequência Cardíaca , Sepse/mortalidade , Idoso , Eletrocardiografia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Frequência Cardíaca/fisiologia , Mortalidade Hospitalar , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco/métodos , Sepse/fisiopatologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-33947006

RESUMO

Background: Little is known about the role of artificial intelligence (AI) as a decisive technology in the clinical management of COVID-19 patients. We aimed to systematically review and critically appraise the current evidence on AI applications for COVID-19 in intensive care and emergency settings. Methods: We systematically searched PubMed, Embase, Scopus, CINAHL, IEEE Xplore, and ACM Digital Library databases from inception to 1 October 2020, without language restrictions. We included peer-reviewed original studies that applied AI for COVID-19 patients, healthcare workers, or health systems in intensive care, emergency, or prehospital settings. We assessed predictive modelling studies and critically appraised the methodology and key findings of all other studies. Results: Of fourteen eligible studies, eleven developed prognostic or diagnostic AI predictive models, all of which were assessed to be at high risk of bias. Common pitfalls included inadequate sample sizes, poor handling of missing data, failure to account for censored participants, and weak validation of models. Conclusions: Current AI applications for COVID-19 are not ready for deployment in acute care settings, given their limited scope and poor quality. Our findings underscore the need for improvements to facilitate safe and effective clinical adoption of AI applications, for and beyond the COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , Inteligência Artificial , Cuidados Críticos , Humanos , SARS-CoV-2
6.
BMC Med Res Methodol ; 21(1): 74, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865317

RESUMO

BACKGROUND: Chest pain is among the most common presenting complaints in the emergency department (ED). Swift and accurate risk stratification of chest pain patients in the ED may improve patient outcomes and reduce unnecessary costs. Traditional logistic regression with stepwise variable selection has been used to build risk prediction models for ED chest pain patients. In this study, we aimed to investigate if machine learning dimensionality reduction methods can improve performance in deriving risk stratification models. METHODS: A retrospective analysis was conducted on the data of patients > 20 years old who presented to the ED of Singapore General Hospital with chest pain between September 2010 and July 2015. Variables used included demographics, medical history, laboratory findings, heart rate variability (HRV), and heart rate n-variability (HRnV) parameters calculated from five to six-minute electrocardiograms (ECGs). The primary outcome was 30-day major adverse cardiac events (MACE), which included death, acute myocardial infarction, and revascularization within 30 days of ED presentation. We used eight machine learning dimensionality reduction methods and logistic regression to create different prediction models. We further excluded cardiac troponin from candidate variables and derived a separate set of models to evaluate the performance of models without using laboratory tests. Receiver operating characteristic (ROC) and calibration analysis was used to compare model performance. RESULTS: Seven hundred ninety-five patients were included in the analysis, of which 247 (31%) met the primary outcome of 30-day MACE. Patients with MACE were older and more likely to be male. All eight dimensionality reduction methods achieved comparable performance with the traditional stepwise variable selection; The multidimensional scaling algorithm performed the best with an area under the curve of 0.901. All prediction models generated in this study outperformed several existing clinical scores in ROC analysis. CONCLUSIONS: Dimensionality reduction models showed marginal value in improving the prediction of 30-day MACE for ED chest pain patients. Moreover, they are black box models, making them difficult to explain and interpret in clinical practice.


Assuntos
Dor no Peito , Serviço Hospitalar de Emergência , Adulto , Dor no Peito/diagnóstico , Feminino , Humanos , Aprendizado de Máquina , Masculino , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Singapura/epidemiologia , Adulto Jovem
7.
BMC Med Res Methodol ; 20(1): 177, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615936

RESUMO

BACKGROUND: Since the beginning of the COVID-19 outbreak in December 2019, a substantial body of COVID-19 medical literature has been generated. As of June 2020, gaps and longitudinal trends in the COVID-19 medical literature remain unidentified, despite potential benefits for research prioritisation and policy setting in both the COVID-19 pandemic and future large-scale public health crises. METHODS: In this paper, we searched PubMed and Embase for medical literature on COVID-19 between 1 January and 24 March 2020. We characterised the growth of the early COVID-19 medical literature using evidence maps and bibliometric analyses to elicit cross-sectional and longitudinal trends and systematically identify gaps. RESULTS: The early COVID-19 medical literature originated primarily from Asia and focused mainly on clinical features and diagnosis of the disease. Many areas of potential research remain underexplored, such as mental health, the use of novel technologies and artificial intelligence, pathophysiology of COVID-19 within different body systems, and indirect effects of COVID-19 on the care of non-COVID-19 patients. Few articles involved research collaboration at the international level (24.7%). The median submission-to-publication duration was 8 days (interquartile range: 4-16). CONCLUSIONS: Although in its early phase, COVID-19 research has generated a large volume of publications. However, there are still knowledge gaps yet to be filled and areas for improvement for the global research community. Our analysis of early COVID-19 research may be valuable in informing research prioritisation and policy planning both in the current COVID-19 pandemic and similar global health crises.


Assuntos
Bibliometria , Infecções por Coronavirus , Pandemias , Publicações Periódicas como Assunto , Pneumonia Viral , COVID-19 , Humanos , Literatura , PubMed
8.
Artigo em Inglês | MEDLINE | ID: mdl-32545399

RESUMO

The accurate prediction of ambulance demand provides great value to emergency service providers and people living within a city. It supports the rational and dynamic allocation of ambulances and hospital staffing, and ensures patients have timely access to such resources. However, this task has been challenging due to complex multi-nature dependencies and nonlinear dynamics within ambulance demand, such as spatial characteristics involving the region of the city at which the demand is estimated, short and long-term historical demands, as well as the demographics of a region. Machine learning techniques are thus useful to quantify these characteristics of ambulance demand. However, there is generally a lack of studies that use machine learning tools for a comprehensive modeling of the important demand dependencies to predict ambulance demands. In this paper, an original and novel approach that leverages machine learning tools and extraction of features based on the multi-nature insights of ambulance demands is proposed. We experimentally evaluate the performance of next-day demand prediction across several state-of-the-art machine learning techniques and ambulance demand prediction methods, using real-world ambulatory and demographical datasets obtained from Singapore. We also provide an analysis of this ambulatory dataset and demonstrate the accuracy in modeling dependencies of different natures using various machine learning techniques.


Assuntos
Algoritmos , Ambulâncias , Serviços Médicos de Emergência , Necessidades e Demandas de Serviços de Saúde , Adulto , Idoso , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Gravidez , Singapura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...