Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 40(41): 12254-65, 2001 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-11591144

RESUMO

Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.


Assuntos
Alquil e Aril Transferases/metabolismo , Prenilação de Proteína , Alquil e Aril Transferases/química , Animais , Domínio Catalítico , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Conformação Proteica , Ratos , Sesquiterpenos , Especificidade por Substrato
3.
J Org Chem ; 65(16): 4949-53, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10956477

RESUMO

p-Azidotetrafluoroaniline (1) was synthesized in 65-73% yield by two different methods employing a stable carbamate intermediate. The first method trapped the intermediate isocyanate generated via a modified Curtius rearrangement with 2-methyl-2-propanol or 2-(trimethylsilyl)ethanol to form the stable carbamates 2d and 2e, respectively. Benzoic acid 2c was first converted to its acid chloride with PCl(5). Displacement of the chloride by NaN(3) in acetone/water formed the acyl azide. Thermal rearrangement followed by the addition of the appropriate alcohols provided the carbamates. The acid labile carbamate 2d was deprotected with HCl/AcOH to provide 1, while trifluoroacetic acid was required to deprotect 2e and afford 1. In the second path, 1 was synthesized in five steps from pentafluoronitrobenzene (3a) in 65% overall yield. Compound 3a was converted into 4-azidotetrafluoronitrobenzene (3b) with NaN(3) in 93% yield and was used without further purification to form 1, 4-diaminotetrafluorobenzene (3c) by Sn/HCl reduction in 85% yield. The mono-9-fluorenylmethoxycarbonyl (FMOC) derivative 3d was formed from 3c with FMOC-Cl and pyridine in EtOAc in 92% yield. Diazotization of 3d under anhydrous conditions with TFA/NaNO(2) and NaN(3) gave 3e in 87% yield. The aryl azide was formed with concurrent nitration of the 2-position of the fluorenyl system. The protecting group was removed with piperidine to afford 1 in 93% yield. Irradiation of 1 with 254 nm light in cyclohexane gave cyclohexylamine 11, diamine 3c, and azobenzene 12 as the primary products. The formation of C-H insertion product 11 indicates that 1 forms a singlet nitrene upon photolysis. Two heterobifunctional photoaffinity reagents iodoacetamide 9 and dansyl derivative 10 were prepared.


Assuntos
Compostos de Anilina/síntese química , Azidas/síntese química , Marcadores de Fotoafinidade/síntese química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Fotólise
4.
J Org Chem ; 65(10): 3027-33, 2000 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-10814193

RESUMO

The posttranslational addition of a farnesyl moiety to the Ras oncoprotein is essential for its membrane localization and is required for both its biological activity and ability to induce malignant transformation. We describe the design and synthesis of a farnesyl pyrophosphate (FPP) analogue, 8-anilinogeranyl pyrophosphate 3 (AGPP), in which the omega-terminal isoprene unit of the farnesyl group has been replaced with an aniline functionality. The key steps in the synthesis are the reductive amination of the alpha,beta-unsaturated aldehyde 5 to form the lipid analogue 6, and the subsequent conversion of the allylic alcohol 7 to the chloride 8 via Ph(3)PCl(2) followed by displacement with [(n-Bu)(4)N](3)HP(2)O(7) to give AGPP (3). AGPP is a substrate for protein farnesyltransferase (FTase) and is transferred to Ras by FTase with the same kinetics as the natural substrate, FPP. AGPP is highly selective, showing little inhibitory activity against either geranylgeranyl-protein transferase type I (GGTase I) (K(i) = 0.06 microM, IC(50) = 20 microM) or squalene synthase (IC(50) = 1000 microM). AGPP is the first efficiently transferable analogue of FPP to be modified at the omega-terminus that provides a platform from which additional analogues can be made to probe the biological function of protein farnesylation. AGPP is the first example of a class of compounds that are alternate substrates for protein isoprenylation that are not inhibitors of squalene synthase.


Assuntos
Alquil e Aril Transferases/metabolismo , Compostos de Anilina/síntese química , Difosfatos/síntese química , Proteínas ras/biossíntese , Alquil e Aril Transferases/antagonistas & inibidores , Compostos de Anilina/farmacologia , Difosfatos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Cinética , Prenilação de Proteína , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...